IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v92y2018icp62-94.html
   My bibliography  Save this article

Methods of heat transfer intensification in PCM thermal storage systems: Review paper

Author

Listed:
  • Al-Maghalseh, Maher
  • Mahkamov, Khamid

Abstract

This paper presents a comprehensive review of significant studies that are relevant to thermal energy storage technologies using phase change materials (PCMs). The review focuses on the techniques applied to enhance the performance of thermal storage systems and the methods used to analyse the heat transfer problems in PCMs. In addition, this paper reviews the published results and discussions on the heat transfer intensification methods including application of fins, filling materials, nano-fluids, nano-particles, microencapsulation and the thermal conductivity enhancement method. Furthermore, the experimental and mathematical methods to enhance the thermal conductivity of PCMs are summarised, and the methods used to determine the nanofluid dynamic viscosity in recent investigations are also listed and discussed. The focus of this review is to provide a solid basis for the identification of the optimal design for the various heat transfer applications using PCM.

Suggested Citation

  • Al-Maghalseh, Maher & Mahkamov, Khamid, 2018. "Methods of heat transfer intensification in PCM thermal storage systems: Review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 62-94.
  • Handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:62-94
    DOI: 10.1016/j.rser.2018.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
    2. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    6. Daniela Charris & Diego Gomez & Angie Rincon Ortega & Mauricio Carmona & Mauricio Pardo, 2020. "A Thermoelectric Energy Harvesting Scheme with Passive Cooling for Outdoor IoT Sensors," Energies, MDPI, vol. 13(11), pages 1-25, June.
    7. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Tafavogh, Mahyar & Zahedi, Alireza, 2021. "Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system," Renewable Energy, Elsevier, vol. 169(C), pages 358-378.
    9. Zakir Khan & Zulfiqar Ahmad Khan, 2021. "Performance Evaluation of Coupled Thermal Enhancement through Novel Wire-Wound Fins Design and Graphene Nano-Platelets in Shell-and-Tube Latent Heat Storage System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    10. Zhao, B.C. & Wang, R.Z., 2020. "A novel 3-D model of an industrial-scale tube-fin latent heat storage using salt hydrates with supercooling: A model validation," Energy, Elsevier, vol. 213(C).
    11. Egea, A. & García, A. & Herrero-Martín, R. & Pérez-García, J., 2022. "Experimental performance of a novel scraped surface heat exchanger for latent energy storage for domestic hot water generation," Renewable Energy, Elsevier, vol. 193(C), pages 870-878.
    12. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2020. "Experimental study on the thermal performance of a grey water heat harnessing exchanger using Phase Change Materials," Renewable Energy, Elsevier, vol. 146(C), pages 1805-1817.
    13. Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
    14. Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Han, Yu & Wen, Chuang & Honoré Walther, Jens & Yang, Yan, 2023. "Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles," Applied Energy, Elsevier, vol. 342(C).
    15. Taynara G. S. Lago & Kamal A. R. Ismail & Fátima A. M. Lino & Victor C. L. Arruda & Vivaldo Silveira Junior, 2022. "Development of Correlations of the Charging and Discharging Times of Carboxyl-Functionalized Multi-Walled Carbon Nanotubes (MWCNT-COOH) and Water with and without Polyethylene Glycol in Spherical Enca," Energies, MDPI, vol. 15(15), pages 1-22, July.
    16. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
    17. Tafavogh, Mahyar & Zahedi, Alireza, 2022. "Improving the performance of home heating system with the help of optimally produced heat storage nanocapsules," Renewable Energy, Elsevier, vol. 181(C), pages 1276-1293.
    18. Zhang, Ji & Cao, Zhi & Huang, Sheng & Huang, Xiaohui & Liang, Kun & Yang, Yan & Zhang, Haoran & Tian, Mi & Akrami, Mohammad & Wen, Chuang, 2022. "Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems," Applied Energy, Elsevier, vol. 322(C).
    19. David González-Peña & Iván Alonso-deMiguel & Montserrat Díez-Mediavilla & Cristina Alonso-Tristán, 2020. "Experimental Analysis of a Novel PV/T Panel with PCM and Heat Pipes," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    20. Maruoka, Nobuhiro & Tsutsumi, Taichi & Ito, Akihisa & Hayasaka, Miho & Nogami, Hiroshi, 2020. "Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer," Energy, Elsevier, vol. 205(C).
    21. Wang, Wei & Shuai, Yong & He, Xibo & Hou, Yicheng & Qiu, Jun & Huang, Yudong, 2023. "Influence of tank-to-particle diameter ratio on thermal storage performance of random packed-bed with spherical macro-encapsulated phase change materials," Energy, Elsevier, vol. 282(C).
    22. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2020. "Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:92:y:2018:i:c:p:62-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.