IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics0360544220306356.html
   My bibliography  Save this article

Numerical investigation on the flow behavior of a novel fluidization based particle thermal energy storage (FP-TES)

Author

Listed:
  • Sulzgruber, Verena
  • Wünsch, David
  • Haider, Markus
  • Walter, Heimo

Abstract

Due to the increasing amount of volatile energy in Europe’s electricity system, the existing storage technologies and capacities are pushed to their limits. Therefore, new concepts like the sensible Fluidization Based Particle Thermal Energy Storage (FP-TES) can be a viable option. The FP-TES is working with bulk material as storage medium, which provides proven benefits like cost efficiency and low thermal losses. Moreover, the greatest advantage of the FP-TES compared to other particle based storage systems is the substitution of mechanical transport devices by an advanced fluidization technology. To prove and further develop this concept of particle transport, numerical simulations are performed. Consequently, an optimized geometry for a cold test rig, working with 800 kg quartz sand, is developed and its behaviour as well as particle mass flow and pressure drops are predicted. Furthermore, the results of experimental investigations performed with the test rig are compared to the numerical simulations. Both the simulation and the experiment show that controlled stable particle mass flow can be achieved by the developed advanced fluidization technology. Finally, a basic layout of an exemplary application is designed and the energetic efficiency is estimated.

Suggested Citation

  • Sulzgruber, Verena & Wünsch, David & Haider, Markus & Walter, Heimo, 2020. "Numerical investigation on the flow behavior of a novel fluidization based particle thermal energy storage (FP-TES)," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306356
    DOI: 10.1016/j.energy.2020.117528
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220306356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    2. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    3. Gomez-Garcia, Fabrisio & Gauthier, Daniel & Flamant, Gilles, 2017. "Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage," Applied Energy, Elsevier, vol. 190(C), pages 510-523.
    4. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    5. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    6. Jorge, Raquel S. & Hertwich, Edgar G., 2014. "Grid infrastructure for renewable power in Europe: The environmental cost," Energy, Elsevier, vol. 69(C), pages 760-768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Wünsch & Verena Sulzgruber & Markus Haider & Heimo Walter, 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity," Energies, MDPI, vol. 13(17), pages 1-20, August.
    2. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N. & Pleshanov, K.A., 2021. "A zero carbon emission CCGT power plant and an existing steam power station modernization scheme," Energy, Elsevier, vol. 237(C).
    3. Verena Sulzgruber & David Wünsch & Heimo Walter & Markus Haider, 2020. "FP-TES: Fluidization Based Particle Thermal Energy Storage, Part II: Experimental Investigations," Energies, MDPI, vol. 13(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Wünsch & Verena Sulzgruber & Markus Haider & Heimo Walter, 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity," Energies, MDPI, vol. 13(17), pages 1-20, August.
    2. Verena Sulzgruber & David Wünsch & Heimo Walter & Markus Haider, 2020. "FP-TES: Fluidization Based Particle Thermal Energy Storage, Part II: Experimental Investigations," Energies, MDPI, vol. 13(17), pages 1-17, August.
    3. Miguel Angel Reyes-Belmonte & Francesco Rovense, 2022. "High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison," Energies, MDPI, vol. 15(22), pages 1-18, November.
    4. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    6. Mehmet Balcilar & Daberechi Chikezie Ekwueme & Hakki Ciftci, 2023. "Assessing the Effects of Natural Resource Extraction on Carbon Emissions and Energy Consumption in Sub-Saharan Africa: A STIRPAT Model Approach," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    9. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    10. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    11. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    12. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    13. Aladejare, Samson Adeniyi, 2022. "Natural resource rents, globalisation and environmental degradation: New insight from 5 richest African economies," Resources Policy, Elsevier, vol. 78(C).
    14. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    15. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    16. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    17. Mozhgan Asna-ashary & Mohammad Reza Farzanegan & Mehdi Feizi & Saeed Malek Sadati, 2020. "COVID-19 Outbreak and Air Pollution in Iran: A Panel VAR Analysis," MAGKS Papers on Economics 202016, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Jahanger, Atif & Hossain, Mohammad Razib & Usman, Muhammad & Chukwuma Onwe, Joshua, 2023. "Recent scenario and nexus between natural resource dependence, energy use and pollution cycles in BRICS region: Does the mediating role of human capital exist?," Resources Policy, Elsevier, vol. 81(C).
    19. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    20. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.