IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305132.html
   My bibliography  Save this article

Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids

Author

Listed:
  • Wang, Huilong
  • Wang, Shengwei
  • Shan, Kui

Abstract

The increased generation of renewable power is challenging in terms of the power balance and reliability of power grids due to the intermittent nature of renewable sources. Heating, ventilation, and air-conditioning (HVAC) systems in buildings, at demand side, are promising candidates for providing frequency regulation. In this study, we systematically assessed the use of variable-speed pumps in HVAC systems for frequency regulation. The dynamic characteristics of the pump were investigated. The results show that the power of the pump can response to the frequency change rapidly (returning stable within 1s), while the response of flow rate is slightly slower. A frequency regulation control strategy is proposed and implemented on a test rig. From the viewpoint of power grids, the experimental results show that the pump can provide high-quality frequency regulation (performance scores of 0.989 and 0.968). From the viewpoint of buildings, the experimental results indicate that the fluctuation magnitude of the air-handling unit outlet air temperature increases (from 3.3 K to 7.1 K) with increasing automatic generation control (AGC) signal frequency, whereas the fluctuation magnitude of the indoor air temperature increases to some extent and then decreases when the frequency of the AGC signal is above a certain level.

Suggested Citation

  • Wang, Huilong & Wang, Shengwei & Shan, Kui, 2020. "Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305132
    DOI: 10.1016/j.energy.2020.117406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    2. Wang, Huilong & Wang, Shengwei & Tang, Rui, 2019. "Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses," Applied Energy, Elsevier, vol. 250(C), pages 697-712.
    3. Li, Weilin & Xu, Peng & Lu, Xing & Wang, Huilong & Pang, Zhihong, 2016. "Electricity demand response in China: Status, feasible market schemes and pilots," Energy, Elsevier, vol. 114(C), pages 981-994.
    4. Taibi, Emanuele & Fernández del Valle, Carlos & Howells, Mark, 2018. "Strategies for solar and wind integration by leveraging flexibility from electric vehicles: The Barbados case study," Energy, Elsevier, vol. 164(C), pages 65-78.
    5. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    6. Huang, Pei & Fan, Cheng & Zhang, Xingxing & Wang, Jiayuan, 2019. "A hierarchical coordinated demand response control for buildings with improved performances at building group," Applied Energy, Elsevier, vol. 242(C), pages 684-694.
    7. Huang, Pei & Sun, Yongjun, 2019. "A collaborative demand control of nearly zero energy buildings in response to dynamic pricing for performance improvements at cluster level," Energy, Elsevier, vol. 174(C), pages 911-921.
    8. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Hong & Wang, Shengwei, 2021. "Energy flexibility quantification of grid-responsive buildings: Energy flexibility index and assessment of their effectiveness for applications," Energy, Elsevier, vol. 221(C).
    2. Huang, Sen & Ye, Yunyang & Wu, Di & Zuo, Wangda, 2021. "An assessment of power flexibility from commercial building cooling systems in the United States," Energy, Elsevier, vol. 221(C).
    3. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    4. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties," Energy, Elsevier, vol. 250(C).
    5. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).
    6. Tang, Hong & Wang, Shengwei, 2022. "A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services," Applied Energy, Elsevier, vol. 305(C).
    7. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    8. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    9. Fu, Yangyang & O'Neill, Zheng & Wen, Jin & Pertzborn, Amanda & Bushby, Steven T., 2022. "Utilizing commercial heating, ventilating, and air conditioning systems to provide grid services: A review," Applied Energy, Elsevier, vol. 307(C).
    10. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    11. Wang, Huilong & Ding, Zhikun & Tang, Rui & Chen, Yongbao & Fan, Cheng & Wang, Jiayuan, 2022. "A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Huilong & Wang, Shengwei, 2021. "A disturbance compensation enhanced control strategy of HVAC systems for improved building indoor environment control when providing power grid frequency regulation," Renewable Energy, Elsevier, vol. 169(C), pages 1330-1342.
    2. Wang, Huilong & Wang, Shengwei, 2021. "A hierarchical optimal control strategy for continuous demand response of building HVAC systems to provide frequency regulation service to smart power grids," Energy, Elsevier, vol. 230(C).
    3. Wang, Huilong & Ding, Zhikun & Tang, Rui & Chen, Yongbao & Fan, Cheng & Wang, Jiayuan, 2022. "A machine learning-based control strategy for improved performance of HVAC systems in providing large capacity of frequency regulation service," Applied Energy, Elsevier, vol. 326(C).
    4. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    5. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    6. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    8. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
    9. Yajing Gao & Xiaojie Zhou & Jiafeng Ren & Zheng Zhao & Fushen Xue, 2018. "Electricity Purchase Optimization Decision Based on Data Mining and Bayesian Game," Energies, MDPI, vol. 11(5), pages 1-19, April.
    10. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    11. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    12. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    13. Bay, Christopher J. & Chintala, Rohit & Chinde, Venkatesh & King, Jennifer, 2022. "Distributed model predictive control for coordinated, grid-interactive buildings," Applied Energy, Elsevier, vol. 312(C).
    14. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    15. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    17. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    19. Siamak Hoseinzadeh & Daniele Groppi & Adriana Scarlet Sferra & Umberto Di Matteo & Davide Astiaso Garcia, 2022. "The PRISMI Plus Toolkit Application to a Grid-Connected Mediterranean Island," Energies, MDPI, vol. 15(22), pages 1-14, November.
    20. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.