IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219324168.html
   My bibliography  Save this article

On the effects of leakages in Sliding Rotary Vane Expanders

Author

Listed:
  • Fatigati, Fabio
  • Di Bartolomeo, Marco
  • Cipollone, Roberto

Abstract

Rotary Vane Expanders (RVE) are very suitable prime movers for ORC-based power units in on-the-road transportation sector. RVEs suffer volumetric efficiency deficits due to leakages which limit the overall expander efficiency and can vanish their intrinsic benefits with respect to the other prime movers. Making reference to a 2 kW Sliding RVE type (SRVE), the paper presents a theoretical and experimental contribution which goes deep into the effect of leakages inside the machine and aims to quantify their amount and effects on the expander performances. The results showed that the volumetric losses increase the mass flow rate aspirated by the machine if the intake pressure is kept constant. This increase favors a greater recovery from the hot source (up to 50%) but part of it bypasses the vanes, producing a volumetric loss. An interesting feature is that part of this additional mass is exchanged among vanes and this produces a beneficial effect on the indicated power (16.6% increase with respect the ideal case). The resulting knowledge further supported the effectiveness of dual intake expander technology which allows to theoretically reduce the leakages between adjacent vane up to 60–70% ensuring an improvement of expander efficiency.

Suggested Citation

  • Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324168
    DOI: 10.1016/j.energy.2019.116721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vodicka, Vaclav & Novotny, Vaclav & Zeleny, Zbynek & Mascuch, Jakub & Kolovratnik, Michal, 2019. "Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander," Energy, Elsevier, vol. 189(C).
    2. Badr, O. & Probert, S.D. & O'Callaghan, P.W., 1985. "Multi-vane expanders: Internal-leakage losses," Applied Energy, Elsevier, vol. 20(1), pages 1-46.
    3. Piotr Kolasiński & Przemysław Błasiak & Józef Rak, 2016. "Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System," Energies, MDPI, vol. 9(8), pages 1-15, August.
    4. Badr, O. & Probert, S.D. & O'Callaghan, P., 1985. "Performances of multi-vane expanders," Applied Energy, Elsevier, vol. 20(3), pages 207-234.
    5. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Olmedo, Luis Eric & Mounier, Violette & Mendoza, Luis Carlos & Schiffmann, Jürg, 2018. "Dimensionless correlations and performance maps of scroll expanders for micro-scale Organic Rankine Cycles," Energy, Elsevier, vol. 156(C), pages 520-533.
    7. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    8. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2019. "Experimental and Numerical Characterization of the Sliding Rotary Vane Expander Intake Pressure in Order to Develop a Novel Control-Diagnostic Procedure," Energies, MDPI, vol. 12(10), pages 1-17, May.
    9. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    10. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    11. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    12. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    13. Macián, V. & Serrano, J.R. & Dolz, V. & Sánchez, J., 2013. "Methodology to design a bottoming Rankine cycle, as a waste energy recovering system in vehicles. Study in a HDD engine," Applied Energy, Elsevier, vol. 104(C), pages 758-771.
    14. Badr, O. & O'Callaghan, P.W. & Probert, S.D., 1985. "Multi-vane expander performance: Breathing characteristics," Applied Energy, Elsevier, vol. 19(4), pages 241-271.
    15. Pantano, Fabio & Capata, Roberto, 2017. "Expander selection for an on board ORC energy recovery system," Energy, Elsevier, vol. 141(C), pages 1084-1096.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    2. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Ali Naseri & Ramin Moradi & Luca Cioccolanti & Alison Subiantoro, 2023. "Impact of the Lubricant on a Modified Revolving Vane Expander (M-RVE) in an Organic Rankine Cycle System," Energies, MDPI, vol. 16(14), pages 1-17, July.
    5. Murthy, Anarghya Ananda & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander," Energy, Elsevier, vol. 238(PB).
    6. Naseri, Ali & Moradi, Ramin & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery," Energy, Elsevier, vol. 253(C).
    7. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    8. Xiong, Yaxuan & Zhang, Aitonglu & Peng, Xiaodong & Yao, Chenhua & Wang, Nan & Wu, Yuting & Xu, Qian & Ma, Chongfang, 2023. "Investigation of a sole gas expander for gas pressure regulation and energy recovery," Energy, Elsevier, vol. 281(C).
    9. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    2. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    3. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    4. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    5. Przemysław Błasiak & Piotr Kolasiński & Sindu Daniarta, 2023. "Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander," Energies, MDPI, vol. 16(6), pages 1-32, March.
    6. Vodicka, Vaclav & Novotny, Vaclav & Zeleny, Zbynek & Mascuch, Jakub & Kolovratnik, Michal, 2019. "Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander," Energy, Elsevier, vol. 189(C).
    7. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    8. Murthy, Anarghya Ananda & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander," Energy, Elsevier, vol. 238(PB).
    9. Rosset, Kévin & Mounier, Violette & Guenat, Eliott & Schiffmann, Jürg, 2018. "Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines," Energy, Elsevier, vol. 159(C), pages 751-765.
    10. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    11. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    12. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    13. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    14. Moradi, Ramin & Habib, Emanuele & Bocci, Enrico & Cioccolanti, Luca, 2020. "Investigation on the use of a novel regenerative flow turbine in a micro-scale Organic Rankine Cycle unit," Energy, Elsevier, vol. 210(C).
    15. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    16. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    17. Guo, Zhiyu & Zhang, Cancan & Wu, Yuting & Lei, Biao & Yan, Dong & Zhi, Ruiping & Shen, Lili, 2020. "Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications," Energy, Elsevier, vol. 199(C).
    18. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    19. Shen, Lili & Wang, Wei & Wu, Yuting & Lei, Biao & Zhi, Ruiping & Lu, Yuanwei & Wang, Jingfu & Ma, Chongfang, 2018. "A study of clearance height on the performance of single-screw expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 153(C), pages 45-55.
    20. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.