IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v190y2020ics0360544219321115.html
   My bibliography  Save this article

Exergetic life cycle assessment of hydrogen production from biomass staged-gasification

Author

Listed:
  • Li, Qiao
  • Song, Guohui
  • Xiao, Jun
  • Hao, Jingwen
  • Li, Haiyan
  • Yuan, Yanyan

Abstract

By combination of life cycle assessment (LCA) and exergy analysis, a modified exergetic life cycle environmental impact model was proposed. The model can quantitatively assess the environmental impacts of resources and pollution by using exergy to measure the deviation degrees of various emissions from the reference environment. Then the comprehensive indicators of resource and environment performance were defined and obtained without introducing subjective weighting factors. Two products of hydrogen (biomass staged-gasification hydrogen (BSGH), and natural gas steam reforming process hydrogen (NGSH)) were evaluated to illustrate the application of the proposed model. The comparison of two products shows that BSGH has significant advantages in both renewability and environmental sustainability. The environment-friendly performance of BGSH mainly exhibits in environment impacts of global warming potential (GWP) and photochemical ozone formation (POF). However, the thermal pollution (TP) of BGSH is slightly larger than that of NGSH. And this indicates that the excessive hot flue gas emissions in BSGH process result in more thermal pollution, and need to be noticed. Furthermore, the sensitivity analysis indicates that the conversion efficiency of tar has a larger influence on total cumulative exergy consumption and environmental index than the combustion efficiency of biomass in the staged-gasification process.

Suggested Citation

  • Li, Qiao & Song, Guohui & Xiao, Jun & Hao, Jingwen & Li, Haiyan & Yuan, Yanyan, 2020. "Exergetic life cycle assessment of hydrogen production from biomass staged-gasification," Energy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321115
    DOI: 10.1016/j.energy.2019.116416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219321115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, A. & Tierney, M., 2011. "Comparison of five exergoenvironmental methods applied to candidate energy systems for rural villages in developing countries," Energy, Elsevier, vol. 36(5), pages 2650-2661.
    2. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
    3. Simpson, Adam P. & Edwards, Chris F., 2013. "The utility of environmental exergy analysis for decision making in energy," Energy, Elsevier, vol. 55(C), pages 742-751.
    4. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    5. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin N. Nwodo & Chimay J. Anumba, 2020. "Exergetic Life Cycle Assessment: A Review," Energies, MDPI, vol. 13(11), pages 1-19, May.
    2. Wu, Le & Yan, Ting & Lei, Qingyu & Zhang, Shuai & Wang, Yuqi & Zheng, Lan, 2022. "Operational optimization of co-processing of heavy oil and bio-oil based on the coordination of desulfurization and deoxygenation," Energy, Elsevier, vol. 239(PE).
    3. Dong, Lei & Tao, Junyu & Zhang, Zhaoling & Yan, Beibei & Cheng, Zhanjun & Chen, Guanyi, 2021. "Energy utilization and disposal of herb residue by an integrated energy conversion system: A pilot scale study," Energy, Elsevier, vol. 215(PB).
    4. Zhao, Xiaolan & Gao, Pei & Shen, Boxiong & Wang, Xiaoqi & Yue, Tian & Han, Zhibin, 2023. "Recent advances in lignin-derived mesoporous carbon based-on template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingqiang & Hou, Jili & Wei, Xing & Jin, Nan & Ma, Yue & Li, Shuyuan & Zhao, Yuchao, 2022. "Advanced exergoenvironmental analysis of the oil shale retorting process with SJ-type rectangular retort," Energy, Elsevier, vol. 260(C).
    2. Keçebaş, Ali, 2016. "Exergoenvironmental analysis for a geothermal district heating system: An application," Energy, Elsevier, vol. 94(C), pages 391-400.
    3. Zhang, Qi & Gao, Jintong & Wang, Yujie & Wang, Lin & Yu, Zaihai & Song, Dayong, 2019. "Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants," Energy, Elsevier, vol. 169(C), pages 247-262.
    4. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    5. Restrepo, Álvaro & Miyake, Raphael & Kleveston, Fábio & Bazzo, Edson, 2012. "Exergetic and environmental analysis of a pulverized coal power plant," Energy, Elsevier, vol. 45(1), pages 195-202.
    6. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    7. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    8. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    9. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    10. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    11. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    12. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    13. Balli, Ozgur & Kale, Utku & Rohács, Dániel & Hikmet Karakoc, T., 2022. "Environmental damage cost and exergoenvironmental evaluations of piston prop aviation engines for the landing and take-off flight phases," Energy, Elsevier, vol. 261(PB).
    14. Zohreh Hassanzadeh Doubendar & Arshiya Noorpoor & Fateme Ahmadi Boyaghchi, 2024. "Performance assessment and multi-objective optimization of a humidification-dehumidification desalination unit and dye-sensitized solar cell integrated with wind tower in arid and semiarid regions of ," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24247-24285, September.
    15. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    16. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    17. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    18. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    19. Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
    20. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:190:y:2020:i:c:s0360544219321115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.