IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316755.html
   My bibliography  Save this article

SAPO-34 based zeolite coatings for adsorption heat pumps

Author

Listed:
  • Calabrese, L.
  • Bonaccorsi, L.
  • Bruzzaniti, P.
  • Proverbio, E.
  • Freni, A.

Abstract

In this work, at first, an overview on SAPO-34 zeolite coating for adsorption heat pumps is presented, highlighting current quality standard and open technological issues (i.e. the need for good mechanical and hydrothermal stability, high aging stability, etc.). Afterwards, we present an improved formulation of adsorbent composite coatings on aluminum support, having improved thermal and mechanical properties, especially when subjected to an impulsive stress. Specifically, the coated samples were prepared by dip-coating method starting from a water suspension of SAPO-34 zeolite and a hybrid polymer binder. Adhesive and mechanical properties were evaluated by pull-off test confirming the good interaction between metal substrate, filler and matrix. Adsorption equilibrium of water vapor on the adsorbent coating was measured in the range T = 30–150 °C and partial pressure of moisture equal to 11 mbar. It was found that binder does not affect the water adsorption capacity and adsorption rate of the original SAPO-34 zeolite.

Suggested Citation

  • Calabrese, L. & Bonaccorsi, L. & Bruzzaniti, P. & Proverbio, E. & Freni, A., 2019. "SAPO-34 based zeolite coatings for adsorption heat pumps," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316755
    DOI: 10.1016/j.energy.2019.115981
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santamaria, Salvatore & Sapienza, Alessio & Frazzica, Andrea & Freni, Angelo & Girnik, Ilya S. & Aristov, Yuri I., 2014. "Water adsorption dynamics on representative pieces of real adsorbers for adsorptive chillers," Applied Energy, Elsevier, vol. 134(C), pages 11-19.
    2. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    3. Wittstadt, Ursula & Füldner, Gerrit & Laurenz, Eric & Warlo, Alexander & Große, André & Herrmann, Ralph & Schnabel, Lena & Mittelbach, Walter, 2017. "A novel adsorption module with fiber heat exchangers: Performance analysis based on driving temperature differences," Renewable Energy, Elsevier, vol. 110(C), pages 154-161.
    4. Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
    5. Aristov, Yuriy I. & Glaznev, Ivan S. & Girnik, Ilya S., 2012. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration," Energy, Elsevier, vol. 46(1), pages 484-492.
    6. Ursula Wittstadt & Gerrit Füldner & Olaf Andersen & Ralph Herrmann & Ferdinand Schmidt, 2015. "A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers," Energies, MDPI, vol. 8(8), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Banos & Sven Ohmann & Felix Alscher & Cornelia Breitkopf & Vicente Pacheco & Maja Glorius & Matthias Veit, 2020. "Systematic Analysis of Materials for Coated Adsorbers for Application in Adsorption Heat Pumps or Refrigeration Systems," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Xiang, Shizhao & Bai, Zhaoyuan & Wang, Ruzhu & Li, Tingxian, 2023. "Performance analysis of sorption thermal battery for high-density cold energy storage enabled by novel tube-free evaporator," Energy, Elsevier, vol. 273(C).
    3. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
    4. Chao, Jingwei & Xu, Jiaxing & Yan, Taisen & Wang, Pengfei & Huo, Xiangyan & Wang, Ruzhu & Li, Tingxian, 2022. "Enhanced thermal conductivity and adsorption rate of zeolite 13X adsorbent by compression-induced molding method for sorption thermal battery," Energy, Elsevier, vol. 240(C).
    5. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Velte & Jörg Weise & Eric Laurenz & Joachim Baumeister & Gerrit Füldner, 2021. "Zeolite NaY-Copper Composites Produced by Sintering Processes for Adsorption Heat Transformation—Technology, Structure and Performance," Energies, MDPI, vol. 14(7), pages 1-24, April.
    2. Aristov, Yuri I., 2020. "Dynamics of adsorptive heat conversion systems: Review of basics and recent advances," Energy, Elsevier, vol. 205(C).
    3. Palomba, V. & Lombardo, W. & Groβe, A. & Herrmann, R. & Nitsch, B. & Strehlow, A. & Bastian, R. & Sapienza, A. & Frazzica, A., 2020. "Evaluation of in-situ coated porous structures for hybrid heat pumps," Energy, Elsevier, vol. 209(C).
    4. Mohammadzadeh Kowsari, Milad & Niazmand, Hamid & Tokarev, Mikhail Mikhailovich, 2018. "Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation," Applied Energy, Elsevier, vol. 213(C), pages 540-554.
    5. João M. S. Dias & Vítor A. F. Costa, 2022. "Adsorption Cooler Design, Dynamic Modeling, and Performance Analyses," Clean Technol., MDPI, vol. 4(4), pages 1-10, November.
    6. Valentin Schwamberger & Aditya Desai & Ferdinand P. Schmidt, 2019. "Novel Adsorption Cycle for High-Efficiency Adsorption Heat Pumps and Chillers: Modeling and Simulation Results," Energies, MDPI, vol. 13(1), pages 1-23, December.
    7. Larisa Gordeeva & Yuri Aristov, 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application," Energies, MDPI, vol. 15(20), pages 1-25, October.
    8. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    10. Sapienza, Alessio & Palomba, Valeria & Gullì, Giuseppe & Frazzica, Andrea & Vasta, Salvatore, 2017. "A new management strategy based on the reallocation of ads-/desorption times: Experimental operation of a full-scale 3 beds adsorption chiller," Applied Energy, Elsevier, vol. 205(C), pages 1081-1090.
    11. Andreas Velte & Gerrit Füldner & Eric Laurenz & Lena Schnabel, 2017. "Advanced Measurement and Simulation Procedure for the Identification of Heat and Mass Transfer Parameters in Dynamic Adsorption Experiments," Energies, MDPI, vol. 10(8), pages 1-25, August.
    12. Patrizia Frontera & Lucio Bonaccorsi & Antonio Fotia & Angela Malara, 2023. "Fibrous Materials for Potential Efficient Energy Recovery at Low-Temperature Heat," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    13. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    14. Tomasz Bujok & Piotr Boruta & Łukasz Mika & Karol Sztekler, 2021. "Analysis of Designs of Heat Exchangers Used in Adsorption Chillers," Energies, MDPI, vol. 14(23), pages 1-28, December.
    15. Frazzica, A. & Palomba, V. & Dawoud, B. & Gullì, G. & Brancato, V. & Sapienza, A. & Vasta, S. & Freni, A. & Costa, F. & Restuccia, G., 2016. "Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair," Applied Energy, Elsevier, vol. 174(C), pages 15-24.
    16. Andreas Velte & Lukas Joos & Gerrit Füldner, 2022. "Experimental Performance Analysis of Adsorption Modules with Sintered Aluminium Fiber Heat Exchangers and SAPO-34-Water Working Pair for Gas-Driven Heat Pumps: Influence of Evaporator Size, Temperatur," Energies, MDPI, vol. 15(8), pages 1-23, April.
    17. Kyle R. Gluesenkamp & Andrea Frazzica & Andreas Velte & Steven Metcalf & Zhiyao Yang & Mina Rouhani & Corey Blackman & Ming Qu & Eric Laurenz & Angeles Rivero-Pacho & Sam Hinmers & Robert Critoph & Ma, 2020. "Experimentally Measured Thermal Masses of Adsorption Heat Exchangers," Energies, MDPI, vol. 13(5), pages 1-21, March.
    18. Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
    19. Lucio Bonaccorsi & Antonio Fotia & Angela Malara & Patrizia Frontera, 2020. "Advanced Adsorbent Materials for Waste Energy Recovery," Energies, MDPI, vol. 13(17), pages 1-15, August.
    20. Sapienza, Alessio & Velte, Andreas & Girnik, Ilya & Frazzica, Andrea & Füldner, Gerrit & Schnabel, Lena & Aristov, Yuri, 2017. "“Water - Silica Siogel” working pair for adsorption chillers: Adsorption equilibrium and dynamics," Renewable Energy, Elsevier, vol. 110(C), pages 40-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.