IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp202-213.html
   My bibliography  Save this article

Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems

Author

Listed:
  • Chen, Tairu
  • Liu, Gang
  • Liao, Shengming

Abstract

Fractured reservoir boundary conditions are crucial to numerical study on reservoir simulation and performance prediction of an enhanced geothermal system (EGS) but have received little attention in previous studies. We established an integrated model involving fractured reservoir and Double-flash geothermal power plant to compare heat extraction and power generation of the EGS under “recharge” and “no-flow” boundary conditions based on geothermal characteristics of Gonghe Basin, China. The “recharge” boundary conditions allow fluxes of mass and heat to cross reservoir boundaries, whereas the “no-flow” disallow such fluxes. The results show that the heat extraction potential around the periphery of the reservoir is overlooked under “no-flow” boundary conditions. Moreover, the fluxes of mass and heat across the reservoir boundaries exert limited influence on heat extraction process in initial stage, but they affect the process significantly in later stage. Additionally, compared with the EGS under “no-flow” boundary conditions, that under the “recharge” has a longer lifespan of 20%, and produces 8% more electricity power. It is also found the EGS maintains high-level power generation performance in the initial period under both boundary conditions, while the electricity output and thermal efficiency decrease significantly in the following stage.

Suggested Citation

  • Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:202-213
    DOI: 10.1016/j.energy.2019.05.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Fangming & Chen, Jiliang & Huang, Wenbo & Luo, Liang, 2014. "A three-dimensional transient model for EGS subsurface thermo-hydraulic process," Energy, Elsevier, vol. 72(C), pages 300-310.
    2. Zeng, Yu-chao & Zhan, Jie-min & Wu, Neng-you & Luo, Ying-ying & Cai, Wen-hao, 2016. "Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field," Energy, Elsevier, vol. 103(C), pages 290-304.
    3. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    4. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    5. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Hu, Jian, 2014. "Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field," Energy, Elsevier, vol. 65(C), pages 472-487.
    6. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    7. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
    8. Zeng, Yuchao & Tang, Liansheng & Wu, Nengyou & Cao, Yifei, 2017. "Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field," Energy, Elsevier, vol. 127(C), pages 218-235.
    9. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    10. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    11. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    12. Zhu, Jialing & Hu, Kaiyong & Zhang, Wei & Lu, Xinli, 2017. "A study on generating a map for selection of optimum power generation cycles used for Enhanced Geothermal Systems," Energy, Elsevier, vol. 133(C), pages 502-512.
    13. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
    14. Huang, Xiaoxue & Zhu, Jialing & Niu, Chengke & Li, Jun & Hu, Xia & Jin, Xianpeng, 2014. "Heat extraction and power production forecast of a prospective Enhanced Geothermal System site in Songliao Basin, China," Energy, Elsevier, vol. 75(C), pages 360-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    2. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    3. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).
    4. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    5. Yang, Renfeng & Zhang, Jinqing & Chen, Han & Jiang, Ruizhong & Sun, Zhe & Rui, Zhenhua, 2019. "The injectivity variation prediction model for water flooding oilfields sustainable development," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    2. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    3. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    4. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    6. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    7. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    8. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    9. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    10. Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
    11. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    12. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    13. Feng, Chenchen & Wang, Huaijiu & Jing, Zefeng, 2021. "Investigation of heat extraction with flowing CO2 from hot dry rock by numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 242-253.
    14. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    15. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).
    16. Xia, Yidong & Plummer, Mitchell & Mattson, Earl & Podgorney, Robert & Ghassemi, Ahmad, 2017. "Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 105(C), pages 232-247.
    17. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    18. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    19. Olasolo, P. & Juárez, M.C. & Morales, M.P. & Olasolo, A. & Agius, M.R., 2018. "Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide as an alternative working fluid," Energy, Elsevier, vol. 157(C), pages 150-161.
    20. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:202-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.