IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v63y2013icp268-282.html
   My bibliography  Save this article

Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field

Author

Listed:
  • Zeng, Yu-Chao
  • Wu, Neng-You
  • Su, Zheng
  • Wang, Xiao-Xing
  • Hu, Jian

Abstract

Based on the geological data of well DP23-1 under the EGS (enhanced geothermal system) project at Desert Peak geothermal field, we numerically investigated the heat production potential from deep HDR (hot dry rock) at this site by water circulating through a novel single vertical fracture. A technically feasible fracture aperture of 2 mm is assumed. The injected water is assumed to sweep the fracture along the diagonal and the effect of high pressure and temperature on water density is taken into considerations. The results indicate that desirable heat production efficiency can be attained under suitable fracture permeability and water production rate, however the heat and electricity production power remains a relative low situation and the water flow impedance retains a relative high level during production process. The sensitivity analysis indicates that the electricity production power mainly depends on rock thermal conductivity, water production rate and injection temperature; water flow impedance mainly depends on the fracture permeability, the rock thermal conductivity, the water production rate and the injection temperature; and energy efficiency mainly depends on the fracture permeability, the water production rate and the rock thermal conductivity. When the fracture permeability and water production rate are under reasonable conditions, the energy output and production efficiency will be optimized. However, rock contraction due to temperature reduction and water–rock interaction are not taken into considerations in this study, so the practical heat output and efficiency through one single vertical fracture needs further study in the future.

Suggested Citation

  • Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
  • Handle: RePEc:eee:energy:v:63:y:2013:i:c:p:268-282
    DOI: 10.1016/j.energy.2013.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
    2. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    2. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    3. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Hu, Jian, 2014. "Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field," Energy, Elsevier, vol. 65(C), pages 472-487.
    4. Moussa, Tamer & Dehghanpour, Hassan, 2022. "Evaluating geothermal energy production from suspended oil and gas wells by using data mining," Renewable Energy, Elsevier, vol. 196(C), pages 1294-1307.
    5. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.
    6. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    7. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.
    8. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    9. Haiyang Jiang & Liangliang Guo & Fengxin Kang & Fugang Wang & Yanling Cao & Zhe Sun & Meng Shi, 2023. "Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    11. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    12. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).
    13. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    14. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    15. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    16. Zeng, Yuchao & Tang, Liansheng & Wu, Nengyou & Cao, Yifei, 2017. "Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field," Energy, Elsevier, vol. 127(C), pages 218-235.
    17. Juan D. Antolinez & Rahman Miri & Alireza Nouri, 2023. "In Situ Combustion: A Comprehensive Review of the Current State of Knowledge," Energies, MDPI, vol. 16(17), pages 1-27, August.
    18. Alimonti, C. & Soldo, E. & Bocchetti, D. & Berardi, D., 2018. "The wellbore heat exchangers: A technical review," Renewable Energy, Elsevier, vol. 123(C), pages 353-381.
    19. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    20. Yin, Weitao & Zhao, Yangsheng & Feng, Zijun, 2019. "Experimental research on the rupture characteristics of fractures subsequently filled by magma and hydrothermal fluid in hot dry rock," Renewable Energy, Elsevier, vol. 139(C), pages 71-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:63:y:2013:i:c:p:268-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.