IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223007648.html
   My bibliography  Save this article

Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin

Author

Listed:
  • Zhai, Haizhen
  • Jin, Guangrong
  • Liu, Lihua
  • Su, Zheng
  • Zeng, Yuchao
  • Liu, Jie
  • Li, Guangyu
  • Feng, Chuangji
  • Wu, Nengyou

Abstract

Based on the geological data of the GR1 borehole at the Qiabuqia geothermal area, northeast Tibetan plateau, a novel EGS with multilateral horizontal wells is proposed to assess the heat production potential. By varying several parameters (e.g. well layout, reservoir naturally occurring, and human-controlled parameters), the sensitivity analysis is implemented. The levelized cost of energy (LCOE) is taken as the economic criteria to intuitively analyze the influence of various parameters on the economy of the system. It is evaluated that in a reservoir at depths of 2650–3650 m and an initial temperature of 151–190 °C, the production temperature can increase from 162.9 to 167.6 °C for 11.6 years and then decline. The basic multilateral horizontal well system attains an electric power of 2.28–2.52 MW, a flow impedance of 0.17–0.26 MPa/(kg/s), and an electric energy efficiency of 3.5–7.0 in 20 years. The saving in greenhouse gas emission is 0.09–0.32 Mt. Sensitivity analysis suggests that the branch number and branch length significantly affect the electric power and flow impedance. A longer branch length and the perpendicular distribution of the main injection and production well are more favorable. Reservoir permeability has a greater influence on heat production performance compared with thermal conductivity and porosity. High permeability can effectively reduce flow impedance, save internal energy consumption and gain a better economy. Reducing the injection flow rate and injection temperature within a certain range can improve the economy of the system.

Suggested Citation

  • Zhai, Haizhen & Jin, Guangrong & Liu, Lihua & Su, Zheng & Zeng, Yuchao & Liu, Jie & Li, Guangyu & Feng, Chuangji & Wu, Nengyou, 2023. "Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007648
    DOI: 10.1016/j.energy.2023.127370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Yu-chao & Zhan, Jie-min & Wu, Neng-you & Luo, Ying-ying & Cai, Wen-hao, 2016. "Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field," Energy, Elsevier, vol. 103(C), pages 290-304.
    2. Marbun, B.T.H. & Ridwan, R.H. & Nugraha, H.S. & Sinaga, S.Z. & Purbantanu, B.A., 2021. "Review of directional drilling design and operation of geothermal wells in Indonesia," Renewable Energy, Elsevier, vol. 176(C), pages 135-152.
    3. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    4. Song, Guofeng & Song, Xianzhi & Li, Gensheng & Shi, Yu & Wang, Gaosheng & Ji, Jiayan & Xu, Fuqiang & Song, Zihao, 2021. "An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system," Renewable Energy, Elsevier, vol. 172(C), pages 1233-1249.
    5. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    6. Chandrasiri Ekneligoda, Thushan & Min, Ki-Bok, 2014. "Determination of optimum parameters of doublet system in a horizontally fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 65(C), pages 152-160.
    7. Mohamed Arbi Ben Aoun & Tamás Madarász, 2022. "Applying Machine Learning to Predict the Rate of Penetration for Geothermal Drilling Located in the Utah FORGE Site," Energies, MDPI, vol. 15(12), pages 1-21, June.
    8. Feng, Zijun & Zhao, Yangsheng & Zhou, Anchao & Zhang, Ning, 2012. "Development program of hot dry rock geothermal resource in the Yangbajing Basin of China," Renewable Energy, Elsevier, vol. 39(1), pages 490-495.
    9. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    10. Yingkai Yin & Zhihui Jiang & Yazhou Liu & Zheng Yu, 2019. "Factors Affecting Carbon Emission Trading Price: Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(15), pages 3433-3451, December.
    11. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
    12. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    13. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    14. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    15. Chamorro, César R. & Mondéjar, María E. & Ramos, Roberto & Segovia, José J. & Martín, María C. & Villamañán, Miguel A., 2012. "World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies," Energy, Elsevier, vol. 42(1), pages 10-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    2. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    3. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    5. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    6. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    7. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    8. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    9. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    10. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    11. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    12. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    13. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    14. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    15. Kang, Fangchao & Li, Yingchun & Tang, Chun'an & Huang, Xin & Li, Tianjiao, 2022. "Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 704-716.
    16. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    17. Wanli Gao & Jingtao Zhao & Suping Peng, 2022. "UNet–Based Temperature Simulation of Hot Dry Rock in the Gonghe Basin," Energies, MDPI, vol. 15(17), pages 1-17, August.
    18. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    19. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    20. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.