IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp144-157.html
   My bibliography  Save this article

Diurnal thermal performance characterization of a solar air heater at local and global scales integrated with thermal battery

Author

Listed:
  • Reddy, Soma Sekhar
  • Soni, Vikram
  • Kumar, Arvind

Abstract

The diurnal thermal performance of a Solar Air Heater (SAH) integrated with Phase Change Material (PCM) based thermal battery is numerically studied. A control volume based advection-diffusion model is coupled with Discrete Ordinate Model (DOM) for considering the effects of solar radiation. Enthalpy-porosity technique is employed to consider various phases of the PCM (solid, liquid and mushy zone). At first, the model is validated with the available experimental result of outlet air temperature for a solar air heater. Thereafter, solar air heaters with and without thermal battery are compared to evaluate the effect of PCM on the thermal performance of the SAH. The local and global heat transfer, the phase change characteristics and their effect on the charging/discharging operation are described. Various numerical simulations are performed to propose optimized operational and design parameters. The integration of the thermal battery enables the SAH to work as diurnal (both day and night) which was not possible with the conventional SAH. The operating time of SAH integrated with thermal battery increases notably by 6 h. To evaluate the enactment of the system, thermal performance indicators are discussed.

Suggested Citation

  • Reddy, Soma Sekhar & Soni, Vikram & Kumar, Arvind, 2019. "Diurnal thermal performance characterization of a solar air heater at local and global scales integrated with thermal battery," Energy, Elsevier, vol. 177(C), pages 144-157.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:144-157
    DOI: 10.1016/j.energy.2019.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930636X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enibe, S.O., 2003. "Thermal analysis of a natural circulation solar air heater with phase change material energy storage," Renewable Energy, Elsevier, vol. 28(14), pages 2269-2299.
    2. Singh Chauhan, Prashant & Kumar, Anil & Tekasakul, Perapong, 2015. "Applications of software in solar drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1326-1337.
    3. Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Xia, Chaofeng, 2007. "Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters," Applied Energy, Elsevier, vol. 84(4), pages 425-441, April.
    4. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
    5. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Modeling of PCM melting: Analysis of discrepancy between numerical and experimental results and energy storage performance," Energy, Elsevier, vol. 150(C), pages 190-204.
    6. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery," Renewable Energy, Elsevier, vol. 127(C), pages 587-601.
    7. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameri, Mehran & Sardari, Reza & Farzan, Hadi, 2021. "Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study," Renewable Energy, Elsevier, vol. 171(C), pages 391-400.
    2. Li, Qing & Shao, Yu-qiang & Shao, Xiao-dong & Liu, Huan-ling & Xie, Gongnan, 2021. "Activation process modeling and performance analysis of thermal batteries considering ignition time interval of heat pellets," Energy, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    2. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    3. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).
    4. Tian, Yang & Liu, Xianglei & Zheng, Hangbin & Xu, Qiao & Zhu, Zhonghui & Luo, Qinyang & Song, Chao & Gao, Ke & Yao, Haichen & Dang, Chunzhuo & Xuan, Yimin, 2022. "Artificial mitochondrion for fast latent heat storage: Experimental study and lattice Boltzmann simulation," Energy, Elsevier, vol. 245(C).
    5. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    6. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    7. Charvát, Pavel & Klimeš, Lubomír & Pech, Ondřej & Hejčík, Jiří, 2019. "Solar air collector with the solar absorber plate containing a PCM – Environmental chamber experiments and computer simulations," Renewable Energy, Elsevier, vol. 143(C), pages 731-740.
    8. Manjunath, M.S. & Karanth, K.Vasudeva & Sharma, N.Yagnesh, 2017. "Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater," Energy, Elsevier, vol. 121(C), pages 616-630.
    9. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    10. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    11. Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
    12. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.
    13. Chii-Dong Ho & Hsuan Chang & Ching-Fang Hsiao & Chien-Chang Huang, 2018. "Device Performance Improvement of Recycling Double-Pass Cross-Corrugated Solar Air Collectors," Energies, MDPI, vol. 11(2), pages 1-18, February.
    14. Arunkumar, H.S. & Kumar, Shiva & Karanth, K. Vasudeva, 2020. "Analysis of a solar air heater for augmented thermohydraulic performance using helicoidal spring shaped fins-A numerical study," Renewable Energy, Elsevier, vol. 160(C), pages 297-311.
    15. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    16. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    17. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
    18. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    19. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    20. Kumar, Vikash, 2021. "Experimental investigation of exergetic efficiency of 3 side concave dimple roughened absorbers," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:144-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.