IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp1012-1025.html
   My bibliography  Save this article

Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir

Author

Listed:
  • Xu, Chengyuan
  • Yan, Xiaopeng
  • Kang, Yili
  • You, Lijun
  • You, Zhenjiang
  • Zhang, Hao
  • Zhang, Jingyi

Abstract

Lost circulation of working fluid into formation fractures is one of the most common and costly problems encountered during the development of petroleum and geothermal resources. Fracture plugging strength and efficiency with loss control material determine the effect of lost circulation control. This paper proposes an integrated method for optimal material selection. The key mechanical parameter of loss control material is determined based on mathematical model and simulation on fracture plugging strength and efficiency. The developed fracture plugging strength model accounts for the shear failure of fracture plugging zone. Simulation with coupled computational fluid dynamics and discrete element method is conducted for fracture plugging efficiency accounting for particles transport and capture in fracture. Model and simulation results show that friction coefficient is the key material mechanical parameter for fracture plugging effect. Laboratory experimental results show that rigid particle with lower roundness, fiber with higher tensile strength and elastic particle with higher deformation rate lead to larger friction coefficient and should be selected as loss control material. Reasonable combination of rigid granule, fiber and elastic particle can create a synergistic effect to achieve the optimal friction coefficient and fracture plugging effect. Material selection strategy is determined and has been successfully applied to field case study in Sichuan Basin, China.

Suggested Citation

  • Xu, Chengyuan & Yan, Xiaopeng & Kang, Yili & You, Lijun & You, Zhenjiang & Zhang, Hao & Zhang, Jingyi, 2019. "Friction coefficient: A significant parameter for lost circulation control and material selection in naturally fractured reservoir," Energy, Elsevier, vol. 174(C), pages 1012-1025.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1012-1025
    DOI: 10.1016/j.energy.2019.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lei & Yao, Bowen & Xie, Haojun & Winterfeld, Philip H. & Kneafsey, Timothy J. & Yin, Xiaolong & Wu, Yu-Shu, 2017. "CO2 injection-induced fracturing in naturally fractured shale rocks," Energy, Elsevier, vol. 139(C), pages 1094-1110.
    2. Kaiser, Mark J., 2009. "Modeling the time and cost to drill an offshore well," Energy, Elsevier, vol. 34(9), pages 1097-1112.
    3. Zhang, Yan-Jun & Guo, Liang-Liang & Li, Zheng-Wei & Yu, Zi-Wang & Xu, Tian-Fu & Lan, Cheng-Yu, 2015. "Electricity generation and heating potential from enhanced geothermal system in Songliao Basin, China: Different reservoir stimulation strategies for tight rock and naturally fractured formations," Energy, Elsevier, vol. 93(P2), pages 1860-1885.
    4. Maru, Marcia M. & Almeida, Clara M. & Silva, Rui F. & Achete, Carlos A., 2013. "Assessment of boundary lubrication in biodiesels by nanotribological tests," Energy, Elsevier, vol. 55(C), pages 273-277.
    5. Ezeuko, C.C. & Gates, I.D., 2018. "Thermal oil recovery from fractured reservoirs: Energy and emissions intensities," Energy, Elsevier, vol. 155(C), pages 29-34.
    6. Hu, Yingxue & Yang, Jian & Wang, Jingyu & Wang, Qiuwang, 2018. "Investigation of hydrodynamic and heat transfer performances in grille-sphere composite pebble beds with DEM-CFD-Taguchi method," Energy, Elsevier, vol. 155(C), pages 909-920.
    7. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chengyuan & Zhang, Honglin & She, Jiping & Jiang, Guobin & Peng, Chi & You, Zhenjiang, 2023. "Experimental study on fracture plugging effect of irregular-shaped lost circulation materials," Energy, Elsevier, vol. 276(C).
    2. Abbas, Ahmed K. & Bashikh, Ali A. & Abbas, Hayder & Mohammed, Haider Q., 2019. "Intelligent decisions to stop or mitigate lost circulation based on machine learning," Energy, Elsevier, vol. 183(C), pages 1104-1113.
    3. Kang, Yili & Zhou, Hexiang & Xu, Chengyuan & Yang, Xinglin & You, Zhenjiang, 2023. "Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing," Energy, Elsevier, vol. 262(PA).
    4. Xu, Chengyuan & Xie, Zhichao & Kang, Yili & Yu, Guoyi & You, Zhenjiang & You, Lijun & Zhang, Jingyi & Yan, Xiaopeng, 2020. "A novel material evaluation method for lost circulation control and formation damage prevention in deep fractured tight reservoir," Energy, Elsevier, vol. 210(C).
    5. Yang, Xianyu & Xie, Jingyu & Ye, Xiaoping & Chen, Shuya & Jiang, Guosheng & Cai, Jihua & Shi, Yanping & Yue, Ye & Xue, Man & Dai, Zhaokai & Fang, Changliang, 2023. "Sealing characteristics and discrete element fluid dynamics analysis of nanofiber in nanoscale shale pores: Modeling and prediction," Energy, Elsevier, vol. 273(C).
    6. Kang, Yili & Ma, Chenglin & Xu, Chengyuan & You, Lijun & You, Zhenjiang, 2023. "Prediction of drilling fluid lost-circulation zone based on deep learning," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    2. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    3. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).
    4. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    5. Navarre, Jeremy T. & Frazier, Jeremy A., 2022. "Econometric analysis of factors influencing commercial helicopter operators’ stock returns in the gulf of Mexico," Journal of Air Transport Management, Elsevier, vol. 99(C).
    6. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    7. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    8. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    9. Lin Wu & Zhifeng Luo & Liqiang Zhao & Nanling Zhang & Zhiguang Yao & Yucheng Jia, 2022. "Transient temperature‐pressure field model of supercritical CO2 fracturing wellbore with tubing and annulus co‐injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 85-102, February.
    10. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    11. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    12. Huijing Tan & Xiuhua Zheng & Chenyang Duan & Bairu Xia, 2016. "Polylactic Acid Improves the Rheological Properties, and Promotes the Degradation of Sodium Carboxymethyl Cellulose-Modified Alkali-Activated Cement," Energies, MDPI, vol. 9(10), pages 1-17, October.
    13. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    14. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    15. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    16. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    17. Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
    18. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    19. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    20. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1012-1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.