IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1119-1129.html
   My bibliography  Save this article

Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers

Author

Listed:
  • Kim, Donghoi
  • Hwang, Chulmin
  • Gundersen, Truls
  • Lim, Youngsub

Abstract

Recent LNG carriers are equipped with high pressure gas injection engines. However, there has been a lack of research on liquefaction processes for boil-off gas (BOG) on LNG ships driven by high pressure fuel. Thus, this paper investigates the economic feasibility of the additional BOG liquefaction facilities in the high pressure fuel supply system on the vessels. To utilize the existing BOG compressor for fuel production, the liquefaction was conducted by the Joule Thomson (JT) cycle, which can use the pressurized BOG as a working fluid. For the comparison of the fuel supply system and its variations with BOG liquefaction, they are optimized with respect to total annual cost (TAC) as the objective function. With an LNG price of 5 USD/MMBtu, the optimization results show that the use of BOG liquefiers on LNG vessels reduces the TAC by at least 9.4% compared to the high pressure fuel supply system. The use of a liquid turbine in the liquefaction configurations also resulted in 2.4% savings in TAC compared to the JT cycle based process. However, a sensitivity analysis with different LNG prices indicates that the liquefaction systems are not economical compared to the fuel supply system when the LNG price is lower than 4 USD/MMBtu.

Suggested Citation

  • Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1119-1129
    DOI: 10.1016/j.energy.2019.02.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sayyaadi, Hoseyn & Babaelahi, M., 2011. "Multi-objective optimization of a joule cycle for re-liquefaction of the Liquefied Natural Gas," Applied Energy, Elsevier, vol. 88(9), pages 3012-3021.
    2. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    3. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    4. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    5. Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Jin, Chunhe & Lim, Youngsub & Xu, Xin, 2023. "Performance analysis of a boil-off gas re-liquefaction process for LNG carriers," Energy, Elsevier, vol. 278(C).
    3. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    4. Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
    5. Jeon, Gyu-Mok & Park, Jong-Chun & Kim, Jae-Won & Lee, Young-Bum & Kim, Deok-Su & Kang, Dong-Eok & Lee, Sang-Beom & Lee, Sang-Won & Ryu, Min-Cheol, 2022. "Experimental and numerical investigation of change in boil-off gas and thermodynamic characteristics according to filling ratio in a C-type cryogenic liquid fuel tank," Energy, Elsevier, vol. 255(C).
    6. Soon-Kyu Hwang & Byung-Gun Jung, 2021. "A Novel Control Strategy on Stable Operation of Fuel Gas Supply System and Re-Liquefaction System for LNG Carriers," Energies, MDPI, vol. 14(24), pages 1-22, December.
    7. Soobin Hyeon & Jinkwang Lee & Jungho Choi, 2022. "Evaluation of Fuel Gas Supply System for Marine Dual-Fuel Propulsion Engines Using LNG and Ammonia Fuel," Energies, MDPI, vol. 15(17), pages 1-16, August.
    8. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
    9. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    10. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    11. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    12. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    2. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    3. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    4. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
    5. Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
    6. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    7. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    8. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
    9. Kochunni, Sarun Kumar & Joy, Jubil & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration," Energy, Elsevier, vol. 176(C), pages 861-873.
    10. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    11. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    12. Son, Hyunsoo & Kim, Jin-Kuk, 2019. "Operability study on small-scale BOG (boil-off gas) re-liquefaction processes," Energy, Elsevier, vol. 185(C), pages 1263-1281.
    13. Yin, L. & Ju, Y.L., 2019. "Comparison and analysis of two nitrogen expansion cycles for BOG Re-liquefaction systems for small LNG ships," Energy, Elsevier, vol. 172(C), pages 769-776.
    14. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
    15. Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
    16. Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
    17. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    18. Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
    19. Jang, Hayoung & Jeong, Byongug & Zhou, Peilin & Ha, Seungman & Nam, Dong, 2021. "Demystifying the lifecycle environmental benefits and harms of LNG as marine fuel," Applied Energy, Elsevier, vol. 292(C).
    20. Park, Hyunjun & Lee, Sanghuk & Jeong, Jinyeong & Chang, Daejun, 2018. "Design of the compressor-assisted LNG fuel gas supply system," Energy, Elsevier, vol. 158(C), pages 1017-1027.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1119-1129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.