IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp874-880.html
   My bibliography  Save this article

Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell

Author

Listed:
  • Kang, Yun Sik
  • Won, Phillip
  • Ko, Seung Hwan
  • Park, Taehyun
  • Yoo, Sung Jong

Abstract

We herein report a simple and effective strategy to fabricate the bending-durable membrane-electrode assembly for bendable polymer electrolyte membrane fuel cells (PEMFCs) by simply coating conventional carbon papers with manually fabricated silver nanowires (Ag NWs). Due to the high stretchability and flexibility of Ag NWs, we expect that the introduction of Ag NWs to carbon fibers would relieve the increase of ohmic and charge transfer resistances derived from the disconnections between each carbon fiber and the resulting decrease of electrical conductivity by repeatedly bending the bendable PEMFCs. We find that by using Ag NWs as an added component to carbon paper, the performance of Ag NWs-applied PEMFC can be maintained after repetitive bending. Carbon papers with the Ag NWs also show higher performance than the PEMFC without Ag NWs in the previous research. From the electrochemical impedance spectra of Ag NWs-coated PEMFC, it is clearly demonstrated that the coated Ag NWs effectively connect between carbon fibers and thereby play a role as a good buffer medium when carbon fibers are disconnected by mechanical bending.

Suggested Citation

  • Kang, Yun Sik & Won, Phillip & Ko, Seung Hwan & Park, Taehyun & Yoo, Sung Jong, 2019. "Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 172(C), pages 874-880.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:874-880
    DOI: 10.1016/j.energy.2019.01.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    2. Martin Kaltenbrunner & Tsuyoshi Sekitani & Jonathan Reeder & Tomoyuki Yokota & Kazunori Kuribara & Takeyoshi Tokuhara & Michael Drack & Reinhard Schwödiauer & Ingrid Graz & Simona Bauer-Gogonea & Sieg, 2013. "An ultra-lightweight design for imperceptible plastic electronics," Nature, Nature, vol. 499(7459), pages 458-463, July.
    3. Neef, H.-J., 2009. "International overview of hydrogen and fuel cell research," Energy, Elsevier, vol. 34(3), pages 327-333.
    4. Appleby, A.J., 1996. "Fuel cell technology: Status and future prospects," Energy, Elsevier, vol. 21(7), pages 521-653.
    5. Ogungbemi, Emmanuel & Ijaodola, Oluwatosin & Khatib, F.N. & Wilberforce, Tabbi & El Hassan, Zaki & Thompson, James & Ramadan, Mohamad & Olabi, A.G., 2019. "Fuel cell membranes – Pros and cons," Energy, Elsevier, vol. 172(C), pages 155-172.
    6. Park, Taehyun & Chang, Ikwhang & Lee, Yoon Ho & Ji, Sanghoon & Cha, Suk Won, 2014. "Analysis of operational characteristics of polymer electrolyte fuel cell with expanded graphite flow-field plates via electrochemical impedance investigation," Energy, Elsevier, vol. 66(C), pages 77-81.
    7. Park, Taehyun & Chang, Ikwhang & Jung, Ju Hae & Lee, Ha Beom & Ko, Seung Hwan & O'Hayre, Ryan & Yoo, Sung Jong & Cha, Suk Won, 2017. "Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector," Energy, Elsevier, vol. 134(C), pages 412-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hui & Eghbalian, Nasrin, 2021. "Numerical studies of effect of integrated through-plane array flow field on novel PEFC performance using BWO algorithm under uncertainties," Energy, Elsevier, vol. 231(C).
    2. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    3. Tan Thong, Pham & Sadhasivam, T. & Kim, Nam-In & Kim, Yoong Ahm & Roh, Sung-Hee & Jung, Ho-Young, 2021. "Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film Zn–MnO2 battery," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    2. Teixeira, Fátima C. & Teixeira, António P.S. & Rangel, C.M., 2022. "New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC," Renewable Energy, Elsevier, vol. 196(C), pages 1187-1196.
    3. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    4. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    5. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    6. Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
    7. Alipour Moghaddam, Jafar & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2018. "Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications," Energy, Elsevier, vol. 161(C), pages 699-709.
    8. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    9. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    10. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    11. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    12. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    13. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    14. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    15. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    16. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    17. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    18. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    19. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    20. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:874-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.