IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp57-67.html
   My bibliography  Save this article

Numerical investigation and optimization of an experimentally analyzed solar CPC

Author

Listed:
  • Korres, D.N.
  • Tzivanidis, C.

Abstract

In this study a compound parabolic collector (CPC) taken from literature was investigated optically and thermally through simulation. The collector was tested at different transversal and the longitudinal incident angles and the results showed us a total agreement between the present and the previous study where TracePro software was used. In addition, a new optical efficiency relationship was proposed and it was found that diverges significantly from the commonly used relationship as the reflector's shape losses and/or the absorber's diameter increase. Also, the CFD analysis results were validated from the previous study experimental data (4.2% mean divergence in thermal efficiency), something that reveals how sufficiently the real problem has been approached. Finally, an optimization process was followed in order to improve the collector's optical performance, while the novel CPC resulted from the optimization was compared with the initial design for the typical conditions of the 11th of June in Athens from 08:00 to 16:00, in order to examine the effect of different solar irradiation intensities in the comparison process. It was revealed that the novel design exceeds the initial one in all the examined hours. The design and the simulation of the collector were conducted via Solidworks Flow Simulation software.

Suggested Citation

  • Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:57-67
    DOI: 10.1016/j.energy.2019.01.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219301276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiping, Chen & Jiguang, Huang & Heng, Zhang & Kai, Liang & Haowen, Liu & Shuangyin, Liang, 2019. "Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system," Energy, Elsevier, vol. 166(C), pages 83-95.
    2. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    3. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    4. Jakica, Nebojsa, 2018. "State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1296-1328.
    5. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    6. Bellos, E. & Tzivanidis, C. & Antonopoulos, K.A. & Gkinis, G., 2016. "Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube," Renewable Energy, Elsevier, vol. 94(C), pages 213-222.
    7. Kaloudis, E. & Papanicolaou, E. & Belessiotis, V., 2016. "Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model," Renewable Energy, Elsevier, vol. 97(C), pages 218-229.
    8. Patil, Ramchandra G. & Panse, Sudhir V. & Joshi, Jyeshtharaj B. & Dalvi, Vishwanath H., 2018. "Alternative designs of evacuated receiver for parabolic trough collector," Energy, Elsevier, vol. 155(C), pages 66-76.
    9. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    10. Zhu, Xiaowei & Zhu, Lei & Zhao, Jingquan, 2017. "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver," Energy, Elsevier, vol. 141(C), pages 1146-1155.
    11. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Picón-Núñez, Martín, 2018. "Solar thermal networks operating with evacuated-tube collectors," Energy, Elsevier, vol. 146(C), pages 26-33.
    12. Cheng, Z.D. & He, Y.L. & Cui, F.Q., 2013. "A new modelling method and unified code with MCRT for concentrating solar collectors and its applications," Applied Energy, Elsevier, vol. 101(C), pages 686-698.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
    3. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    4. Xia, En-Tong & Xu, Jin-Tao & Chen, Fei, 2021. "Investigation on structural and optical characteristics for an improved compound parabolic concentrator based on cylindrical absorber," Energy, Elsevier, vol. 219(C).
    5. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    6. Korres, Dimitrios N. & Tzivanidis, Christos, 2022. "A novel asymmetric compound parabolic collector under experimental and numerical investigation," Renewable Energy, Elsevier, vol. 199(C), pages 1580-1592.
    7. Zhang, Xueyan & Wang, Xin & Li, Zhongzhe & Luo, Huilong & Chen, Fei, 2023. "Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber," Energy, Elsevier, vol. 282(C).
    8. Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
    9. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    4. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    5. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    6. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    7. Teerapath Limboonruang & Muyiwa Oyinlola & Dani Harmanto & Pracha Bunyawanichakul & Nittalin Phunapai, 2023. "Optimizing Solar Parabolic Trough Receivers with External Fins: An Experimental Study on Enhancing Heat Transfer and Thermal Efficiency," Energies, MDPI, vol. 16(18), pages 1-22, September.
    8. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    9. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    10. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    11. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    12. Korres, Dimitrios N. & Tzivanidis, Christos, 2022. "A novel asymmetric compound parabolic collector under experimental and numerical investigation," Renewable Energy, Elsevier, vol. 199(C), pages 1580-1592.
    13. Korres, Dimitrios & Tzivanidis, Christos, 2018. "A new mini-CPC with a U-type evacuated tube under thermal and optical investigation," Renewable Energy, Elsevier, vol. 128(PB), pages 529-540.
    14. Varun, K. & Arunachala, U.C. & Elton, D.N., 2020. "Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector," Renewable Energy, Elsevier, vol. 156(C), pages 478-492.
    15. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    16. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    17. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.
    18. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    19. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
    20. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:57-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.