IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp478-492.html
   My bibliography  Save this article

Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector

Author

Listed:
  • Varun, K.
  • Arunachala, U.C.
  • Elton, D.N.

Abstract

Heat transfer augmentation using turbulators in PTC is well known. However, based on the methodology its thermo-hydraulic rating can vary. In the present experimental study, variations of wire matrix and twisted tape have been used to analyse the thermo-hydraulic behavior of the PTC by referring two approaches viz. thermo-hydraulic efficiency and performance evaluation criterion. An innovative method comprising, analytical model-SOLTRACE®- differential resistance heating is incorporated to simulate the highly non-uniform solar irradiance over the receiver in an indoor test rig. Under the same operating condition, thermo-hydraulic efficiency of medium dense wire matrix is maximum whereas twisted tape of twist ratio 3.37 yields better result as per performance evaluation criterion. However, thermo-hydraulic efficiency based analysis is recommended due to the role of realistic pumping power. Further, variation in energy parameters viz. thermal efficiency, pumping power, Nusselt number and their effect on receiver length have been analyzed. The trade-off between two inserts is also discussed with respect to operating condition.

Suggested Citation

  • Varun, K. & Arunachala, U.C. & Elton, D.N., 2020. "Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector," Renewable Energy, Elsevier, vol. 156(C), pages 478-492.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:478-492
    DOI: 10.1016/j.renene.2020.04.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030625X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xiaowei & Zhu, Lei & Zhao, Jingquan, 2017. "Wavy-tape insert designed for managing highly concentrated solar energy on absorber tube of parabolic trough receiver," Energy, Elsevier, vol. 141(C), pages 1146-1155.
    2. Sandeep, H.M. & Arunachala, U.C., 2017. "Solar parabolic trough collectors: A review on heat transfer augmentation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1218-1231.
    3. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    4. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    5. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    6. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    7. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravanbakhsh, Mohammad & Gholizadeh, Mohammad & Rezapour, Mojtaba, 2023. "3E thermodynamic modeling and optimization a novel of ARS-CPVT with the effect of inserting a turbulator in the solar collector," Renewable Energy, Elsevier, vol. 209(C), pages 591-607.
    2. Sheikholeslami, M. & Farshad, Seyyed Ali & Shafee, Ahmad & Babazadeh, Houman, 2021. "Performance of solar collector with turbulator involving nanomaterial turbulent regime," Renewable Energy, Elsevier, vol. 163(C), pages 1222-1237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    2. Liu, Peng & Dong, Zhimin & Xiao, Hui & Liu, Zhichun & Liu, Wei, 2021. "Thermal-hydraulic performance analysis of a novel parabolic trough receiver with double tube for solar cascade heat collection," Energy, Elsevier, vol. 219(C).
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    5. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    6. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    7. Abu-Hamdeh, Nidal H. & Bantan, Rashad A.R. & Khoshvaght-Aliabadi, Morteza & Alimoradi, Ashkan, 2020. "Effects of ribs on thermal performance of curved absorber tube used in cylindrical solar collectors," Renewable Energy, Elsevier, vol. 161(C), pages 1260-1275.
    8. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    9. Zaharil, H.A. & Hasanuzzaman, M., 2020. "Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition," Renewable Energy, Elsevier, vol. 149(C), pages 22-41.
    10. Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
    11. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    12. Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
    13. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    14. Peng, Hao & Li, Meilin & Liang, Xingang, 2020. "Thermal-hydraulic and thermodynamic performance of parabolic trough solar receiver partially filled with gradient metal foam," Energy, Elsevier, vol. 211(C).
    15. Evangelos Bellos & Christos Tzivanidis, 2018. "Enhancing the Performance of Evacuated and Non-Evacuated Parabolic Trough Collectors Using Twisted Tape Inserts, Perforated Plate Inserts and Internally Finned Absorber," Energies, MDPI, vol. 11(5), pages 1-28, May.
    16. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    17. Ou, Gen & Liu, Peng & Liu, Zhichun & Liu, Wei, 2022. "Performance analyses and heat transfer optimization of parabolic trough receiver with a novel single conical strip insert," Renewable Energy, Elsevier, vol. 199(C), pages 335-350.
    18. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    19. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    20. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:478-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.