IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220327900.html
   My bibliography  Save this article

Investigation on structural and optical characteristics for an improved compound parabolic concentrator based on cylindrical absorber

Author

Listed:
  • Xia, En-Tong
  • Xu, Jin-Tao
  • Chen, Fei

Abstract

In order to achieve the separation of absorber and reflector for compound parabolic concentrator (CPC) and solve effectively the drawback of resulting gap loss, an attempt to improve the structure and optical properties of CPC with cylindrical absorber is presented. Herein, a mathematical model of profile curve for the improved CPC is firstly established according to differential geometry. The structure of the improved CPC is more compact because of its saw-tooth, and it is beneficial to economize on the material with a reduced height of 24.1%. The ray path in practical application for improved CPC is verified via home-built experimental platform with laser generator. Furthermore, the mathematical relationships of optical efficiencies versus projected incident angles are revealed via numerical fitting. The optical efficiency curve for improved CPC is smoother and the non-uniformity of local flux distribution on absorber tube is mitigated, which predicts that the energy output of improved CPC is more stable. Compared with common CPC, the improved CPC provides an enhancement of absorbed total solar energy, which is increased by 8.3%, 4.8%, 7.4% and 2.9% in spring, summer, autumn and winter, respectively. The meaningful research results are beneficial to the structure design and performance enhancement of CPC.

Suggested Citation

  • Xia, En-Tong & Xu, Jin-Tao & Chen, Fei, 2021. "Investigation on structural and optical characteristics for an improved compound parabolic concentrator based on cylindrical absorber," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327900
    DOI: 10.1016/j.energy.2020.119683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Y.J. & Hu, H.M. & Ge, T.S. & Wang, R.Z. & Kjellsen, Per, 2016. "Investigation on a mini-CPC hybrid solar thermoelectric generator unit," Renewable Energy, Elsevier, vol. 92(C), pages 83-94.
    2. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    3. Deng, Chenggang & Chen, Fei, 2020. "Preliminary investigation on photo-thermal performance of a novel embedded building integrated solar evacuated tube collector with compound parabolic concentrator," Energy, Elsevier, vol. 202(C).
    4. Guiqiang, Li & Gang, Pei & Yuehong, Su & Jie, Ji & Riffat, Saffa B., 2013. "Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator," Energy, Elsevier, vol. 58(C), pages 398-403.
    5. Hadavinia, Homan & Singh, Harjit, 2019. "Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems," Renewable Energy, Elsevier, vol. 139(C), pages 815-829.
    6. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    7. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    8. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    2. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    3. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    4. Xu, Jintao & Chen, Fei & Deng, Chenggang, 2021. "Design and analysis of a novel multi-sectioned compound parabolic concentrator with multi-objective genetic algorithm," Energy, Elsevier, vol. 225(C).
    5. Hu, Xin & Chen, Fei & Zhang, Zhenhua, 2021. "Model construction and optical properties investigation for multi-sectioned compound parabolic concentrator with particle swarm optimization," Renewable Energy, Elsevier, vol. 179(C), pages 379-394.
    6. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    7. Guihua Li & Jingjing Tang & Runsheng Tang, 2018. "A Theoretical Study on Performance and Design Optimization of Linear Dielectric Compound Parabolic Concentrating Photovoltaic Systems," Energies, MDPI, vol. 11(9), pages 1-30, September.
    8. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    9. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    10. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    11. Jingjing Tang & Yamei Yu & Runsheng Tang, 2018. "A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems," Energies, MDPI, vol. 11(4), pages 1-24, April.
    12. Zhang, Xueyan & Jiang, Shuoxun & Lin, Ziming & Gui, Qinghua & Chen, Fei, 2023. "Model construction and performance analysis for asymmetric compound parabolic concentrator with circular absorber," Energy, Elsevier, vol. 267(C).
    13. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    14. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    15. Rui Li & Guomin Cui, 2022. "Comprehensive Performance Evaluation of a Dual-Function Active Solar Thermal Façade System Based on Energy, Economic and Environmental Analysis in China," Energies, MDPI, vol. 15(11), pages 1-19, June.
    16. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    17. Ren, Ting & Ma, Tianzeng & Liu, Sha & Li, Xin, 2022. "Bi-level optimization for the energy conversion efficiency improvement in a photocatalytic-hydrogen-production system," Energy, Elsevier, vol. 253(C).
    18. Faisal Masood & Perumal Nallagownden & Irraivan Elamvazuthi & Javed Akhter & Mohammad Azad Alam, 2021. "A New Approach for Design Optimization and Parametric Analysis of Symmetric Compound Parabolic Concentrator for Photovoltaic Applications," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    19. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    20. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.