IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp273-284.html
   My bibliography  Save this article

Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants

Author

Listed:
  • Sun, Yubiao
  • Guan, Zhiqiang
  • Gurgenci, Hal
  • Wang, Jianyong
  • Dong, Peixin
  • Hooman, Kamel

Abstract

In concentrated solar power (CSP) plants built in dry and arid areas, natural draft dry cooling tower (NDDCT) are commonly employed to dissipate waste heat into the atmosphere. The cooling performance of NDDCT mainly depends on the induced air flow caused by the buoyancy effect. However, the high ambient temperature in summers reduce the cooling efficiency of dry cooling towers and cause significant power loss for CSP plants. To address this problem, spray cooling system utilizing water evaporation was developed to pre-cool the inlet hot air. Different designs of spray cooling systems were proposed and tested on a 20 m high experimental tower. Experimental data were collected to evaluate the performance of the spray cooling system. To our knowledge, this is the world's first attempt to practice spray cooling on a full-scale natural draft dry cooling tower. This study confirms the feasibility and effectiveness of employing spray cooling for cooling performance enhancement of NDDCT. With the goal of maximal cooling effect with least water consumption, the optimal design was proposed, which consists of 3 upward injections at the low level (Height = 2 m), 2 counterflow injections at the middle level (H = 3 m) and 3 counterflow injections at the high level (H = 4 m). The cooling capacity of NDDCT increases from 789 kW to 841.73 kW, as the result of an intensified natural convection. Moreover, in the spray zone, the presence of a low-temperature area is featured by high relative humidity (70%–80%). The intensified natural convection caused by pre-cooled air and the presence of high vapour concentration are attributed to spray evaporation, which confirms the necessity to introduce the spray cooling system.

Suggested Citation

  • Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:273-284
    DOI: 10.1016/j.energy.2018.11.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    2. Chen, Qun & Yang, Kangding & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2010. "A new approach to analysis and optimization of evaporative cooling system I: Theory," Energy, Elsevier, vol. 35(6), pages 2448-2454.
    3. Sun, Yubiao & Guan, Zhiqiang & Hooman, Kamel, 2017. "A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 618-637.
    4. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    5. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    6. De Paepe, W. & Contino, F. & Delattin, F. & Bram, S. & De Ruyck, J., 2014. "New concept of spray saturation tower for micro Humid Air Turbine applications," Applied Energy, Elsevier, vol. 130(C), pages 723-737.
    7. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Huang & Yifan Zhi & Rongyong Zhang & Huimin Wei & Lei Xu, 2022. "Comprehensive Comparison of Hybrid Cooling of Thermal Power Generation with Airside Serial and Parallel Heat Exchange," Energies, MDPI, vol. 15(17), pages 1-28, September.
    2. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    3. Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).
    4. Puig-Samper, Gonzalo & Bargiacchi, Eleonora & Iribarren, Diego & Dufour, Javier, 2022. "Assessing the prospective environmental performance of hydrogen from high-temperature electrolysis coupled with concentrated solar power," Renewable Energy, Elsevier, vol. 196(C), pages 1258-1268.
    5. Paula M. Wenzel & Peter Radgen, 2023. "Extending effectiveness to efficiency: Comparing energy and environmental assessment methods for a wet cooling tower," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 693-706, June.
    6. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    7. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    8. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    2. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
    3. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    4. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    5. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    6. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    7. Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).
    8. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Transient behavior of the cold end system in an indirect dry cooling thermal power plant under varying operating conditions," Energy, Elsevier, vol. 181(C), pages 1202-1212.
    9. Lemouari, M. & Boumaza, M. & Kaabi, A., 2011. "Experimental investigation of the hydraulic characteristics of a counter flow wet cooling tower," Energy, Elsevier, vol. 36(10), pages 5815-5823.
    10. Peer, Rebecca A.M. & Sanders, Kelly T., 2018. "The water consequences of a transitioning US power sector," Applied Energy, Elsevier, vol. 210(C), pages 613-622.
    11. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    13. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    14. Benjamin Court & Thomas Elliot & Joseph Dammel & Thomas Buscheck & Jeremy Rohmer & Michael Celia, 2012. "Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO 2 sequestration," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 569-599, August.
    15. Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
    16. Yu Zhai & Xu Zhao & Zhifeng Dong, 2022. "Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air," Energies, MDPI, vol. 15(22), pages 1-14, November.
    17. Zhan, Changhong & Duan, Zhiyin & Zhao, Xudong & Smith, Stefan & Jin, Hong & Riffat, Saffa, 2011. "Comparative study of the performance of the M-cycle counter-flow and cross-flow heat exchangers for indirect evaporative cooling – Paving the path toward sustainable cooling of buildings," Energy, Elsevier, vol. 36(12), pages 6790-6805.
    18. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    19. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    20. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:273-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.