IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp682-698.html
   My bibliography  Save this article

Numerical investigation of heat transfer in a CO2 two-phase ejector

Author

Listed:
  • Haida, Michal
  • Smolka, Jacek
  • Hafner, Armin
  • Mastrowski, Mikolaj
  • Palacz, Michał
  • Madsen, Kenneth B.
  • Nowak, Andrzej J.
  • Banasiak, Krzysztof

Abstract

In this paper, the influence of heat transfer in the walls of an R744 two-phase ejector on ejector performance was investigated. A numerical investigation was performed using a computational fluid dynamic (CFD) model of the R744 two-phase flow coupled with the heat transfer inside the ejector. An ejector equipped with thermocouple channels was designed and manufactured to investigate temperature distribution in the inner walls under boundary conditions typical for a refrigeration and air-conditioning application in a supermarket. The ejector was installed on the test rig to perform a test series that evaluated the outer walls of the ejector with and without insulation. The experimental results were used to validate the proposed CFD model, and a numerical investigation was performed to analyse the influence of heat transfer on ejector performance. The motive nozzle and suction nozzle mass flow rates accuracies were within ±7% and ±15%, respectively. In addition, the proposed CFD model predicted the wall temperatures with ±5 K accuracy for most of the validated points. The heat transfer coefficient of the R744 two-phase flow inside the ejector is presented. The non-adiabatic inner walls degraded ejector performance. The maximum reduction of the mass entrainment ratio reached approximately 13%.

Suggested Citation

  • Haida, Michal & Smolka, Jacek & Hafner, Armin & Mastrowski, Mikolaj & Palacz, Michał & Madsen, Kenneth B. & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Numerical investigation of heat transfer in a CO2 two-phase ejector," Energy, Elsevier, vol. 163(C), pages 682-698.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:682-698
    DOI: 10.1016/j.energy.2018.08.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
    2. Li, Yafei & Deng, Jianqiang, 2022. "Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model," Energy, Elsevier, vol. 238(PC).
    3. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    4. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    2. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. Lixing Zheng & Hongwei Hu & Weibo Wang & Yiyan Zhang & Lingmei Wang, 2022. "Study on Flow Distribution and Structure Optimization in a Mix Chamber and Diffuser of a CO 2 Two-Phase Ejector," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    4. Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
    5. Michal Haida & Rafal Fingas & Wojciech Szwajnoch & Jacek Smolka & Michal Palacz & Jakub Bodys & Andrzej J. Nowak, 2019. "An Object-Oriented R744 Two-Phase Ejector Reduced-Order Model for Dynamic Simulations," Energies, MDPI, vol. 12(7), pages 1-24, April.
    6. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    7. Zhu, Jingwei & Botticella, Francesco & Elbel, Stefan, 2018. "Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles," Energy, Elsevier, vol. 157(C), pages 718-733.
    8. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    9. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.
    10. Artur Bieniek & Jan Kuchmacz & Karol Sztekler & Lukasz Mika & Ewelina Radomska, 2021. "A New Method of Regulating the Cooling Capacity of a Cooling System with CO 2," Energies, MDPI, vol. 14(7), pages 1-18, March.
    11. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    12. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    13. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    14. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    15. Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
    16. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    17. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    18. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    19. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    20. Ángel Á. Pardiñas & Michael Jokiel & Christian Schlemminger & Håkon Selvnes & Armin Hafner, 2021. "Modeling of a CO 2 -Based Integrated Refrigeration System for Supermarkets," Energies, MDPI, vol. 14(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:682-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.