IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp396-411.html
   My bibliography  Save this article

Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems

Author

Listed:
  • Misaghian, M.S.
  • Saffari, M.
  • Kia, M.
  • Heidari, A.
  • Shafie-khah, M.
  • Catalão, J.P.S.

Abstract

This paper presents a new framework for optimizing the operation of Industrial MicroGrids (IMG). The proposed framework consists of three levels. At the first level, a Profit Based Security Constrained Unit Commitment (PB-SCUC) is solved in order to minimize the total expected cost of IMG via maximizing the IMG revenue by transacting in the day-ahead power market and optimizing the scheduling of the units. In this paper, the tendency of IMG for participating in the day-ahead power market is modelled as a quadric function. At the second level, a Security Constrained Unit Commitment is solved at the upper grid for minimizing the upper grid operation and guaranteeing its security. At this level, the accepted IMG bids in the day-ahead power market would be determined. Finally, at the third level, the IMG operator must settle its units on the basis of its accepted bids. Therefore, a rescheduling problem is solved in the third level. Notably, Renewable Energy Sources (RESs), Combined Heat and Power (CHP) units, thermal and electrical storage systems are considered in the IMG. As the RESs and day-ahead market price have stochastic behaviours, their uncertainty is taken into account by implementing stochastic programming. Further, different cases for grid-connected and island modes of IMG are discussed, and the advantages of utilizing RES and storage systems are given. The simulation results are provided based on the IEEE 18-bus test system for IMG and IEEE 30-bus test system for the upper grid.

Suggested Citation

  • Misaghian, M.S. & Saffari, M. & Kia, M. & Heidari, A. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems," Energy, Elsevier, vol. 161(C), pages 396-411.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:396-411
    DOI: 10.1016/j.energy.2018.07.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Catalão, João P.S., 2017. "New framework for optimal scheduling of combined heat and power with electric and thermal storage systems considering industrial customers inter-zonal power exchanges," Energy, Elsevier, vol. 138(C), pages 1006-1015.
    2. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    3. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    4. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    5. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    6. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    7. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    8. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2016. "Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 421-432.
    9. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    2. Sina Eslamizadeh & Amineh Ghorbani & Yashar Araghi & Margot Weijnen, 2022. "Collaborative Renewable Energy Generation among Industries: The Role of Social Identity, Awareness and Institutional Design," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    3. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    4. Nasiri, Nima & Mansour Saatloo, Amin & Mirzaei, Mohammad Amin & Ravadanegh, Sajad Najafi & Zare, Kazem & Mohammadi-ivatloo, Behnam & Marzband, Mousa, 2023. "A robust bi-level optimization framework for participation of multi-energy service providers in integrated power and natural gas markets," Applied Energy, Elsevier, vol. 340(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Maria Izabel & Uturbey, Wadaed, 2018. "A practical model for energy dispatch in cogeneration plants," Energy, Elsevier, vol. 151(C), pages 144-159.
    2. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    3. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    4. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    5. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    6. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Valdes, Javier & Poque González, Axel Bastián & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2020. "Unveiling the potential for combined heat and power in Chilean industry - A policy perspective," Energy Policy, Elsevier, vol. 140(C).
    8. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    9. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    10. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    11. Omid Sadeghian & Arash Moradzadeh & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Fausto Pedro Garcia Marquez, 2020. "Generation Units Maintenance in Combined Heat and Power Integrated Systems Using the Mixed Integer Quadratic Programming Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    12. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    13. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    14. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2016. "Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 421-432.
    15. Varasteh, Farid & Nazar, Mehrdad Setayesh & Heidari, Alireza & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Distributed energy resource and network expansion planning of a CCHP based active microgrid considering demand response programs," Energy, Elsevier, vol. 172(C), pages 79-105.
    16. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Catalão, João P.S., 2017. "New framework for optimal scheduling of combined heat and power with electric and thermal storage systems considering industrial customers inter-zonal power exchanges," Energy, Elsevier, vol. 138(C), pages 1006-1015.
    17. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    18. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    19. Taofeek Afolabi & Hooman Farzaneh, 2023. "Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques," Sustainability, MDPI, vol. 15(4), pages 1-33, February.
    20. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:396-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.