IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp341-348.html
   My bibliography  Save this article

Environmental assessment of wind turbine systems based on thermo-ecological cost

Author

Listed:
  • Stanek, Wojciech
  • Mendecka, Barbara
  • Lombardi, Lidia
  • Simla, Tomasz

Abstract

An increased wind capacity penetration reduces loading on conventional thermal units causing higher fuel requirements due to the off-design operation. Regarding the environmental analysis, such an adverse effect should be allocated to the operational phase of wind turbines. In the present work, we apply Thermo-ecological Cost (TEC) to evaluate the environmental performance of wind power systems operating in Poland and Italy. The analysis focuses on the quantitative assessment of the effect of additional chemical energy consumption due to part-load operation of the conventional power units in both analyzed electricity systems. We present the results for two different dispatch strategies. The results confirm high environmental effectiveness of wind power systems. However, the TEC resulting from the compensation for wind generation variations has a significant contribution to the overall LC-TEC index. In particular, without considering the effect of compensation, the TEC for wind turbines are from 47 to 65 times lower than for coal-fired power plants and 35 to 48 times lower than for NGCC plants. Concerning the real load conditions, and considering the effects resulting from the compensation for wind generation variations, the TEC index for this phase contributes between 36% and 75% to the total TEC value.

Suggested Citation

  • Stanek, Wojciech & Mendecka, Barbara & Lombardi, Lidia & Simla, Tomasz, 2018. "Environmental assessment of wind turbine systems based on thermo-ecological cost," Energy, Elsevier, vol. 160(C), pages 341-348.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:341-348
    DOI: 10.1016/j.energy.2018.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szargut, J. & Stanek, W., 2007. "Thermo-ecological optimization of a solar collector," Energy, Elsevier, vol. 32(4), pages 584-590.
    2. Stanek, Wojciech & Szargut, Jan & Kolenda, Zygmunt & Czarnowska, Lucyna, 2016. "Exergo-ecological and economic evaluation of a nuclear power plant within the whole life cycle," Energy, Elsevier, vol. 117(P2), pages 369-377.
    3. Szargut, J., 2002. "Application of exergy for the determination of the pro-ecological tax replacing the actual personal taxes," Energy, Elsevier, vol. 27(4), pages 379-389.
    4. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    5. Turconi, R. & O’Dwyer, C. & Flynn, D. & Astrup, T., 2014. "Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland," Applied Energy, Elsevier, vol. 131(C), pages 1-8.
    6. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    7. Szargut, Jan & Stanek, Wojciech, 2008. "Influence of the pro-ecological tax on the market prices of fuels and electricity," Energy, Elsevier, vol. 33(2), pages 137-143.
    8. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    9. Gutiérrez-Martín, F. & Da Silva-Álvarez, R.A. & Montoro-Pintado, P., 2013. "Effects of wind intermittency on reduction of CO2 emissions: The case of the Spanish power system," Energy, Elsevier, vol. 61(C), pages 108-117.
    10. Kim, T.S., 2004. "Comparative analysis on the part load performance of combined cycle plants considering design performance and power control strategy," Energy, Elsevier, vol. 29(1), pages 71-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    3. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    4. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    5. Mendecka, Barbara & Tribioli, Laura & Cozzolino, Raffaello, 2020. "Life Cycle Assessment of a stand-alone solar-based polygeneration power plant for a commercial building in different climate zones," Renewable Energy, Elsevier, vol. 154(C), pages 1132-1143.
    6. Simla, Tomasz & Stanek, Wojciech, 2020. "Influence of the wind energy sector on thermal power plants in the Polish energy system," Renewable Energy, Elsevier, vol. 161(C), pages 928-938.
    7. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2019. "Improved maintenance optimization of offshore wind systems considering effects of government subsidies, lost production and discounted cost model," Energy, Elsevier, vol. 187(C).
    8. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    9. Stanek, Wojciech, 2022. "Thermo-Ecological Cost (TEC) –comparison of energy-ecological efficiency of renewable and non-renewable energy technologies," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    2. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    3. Stanek, Wojciech & Czarnowska, Lucyna & Gazda, Wiesław & Simla, Tomasz, 2018. "Thermo-ecological cost of electricity from renewable energy sources," Renewable Energy, Elsevier, vol. 115(C), pages 87-96.
    4. Simla, Tomasz & Stanek, Wojciech, 2020. "Influence of the wind energy sector on thermal power plants in the Polish energy system," Renewable Energy, Elsevier, vol. 161(C), pages 928-938.
    5. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    6. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    7. Mei Liao & Chao Ma & Dongpu Yao & Huizheng Liu, 2013. "Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies," Asia Europe Journal, Springer, vol. 11(3), pages 265-283, September.
    8. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    9. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    10. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    11. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    12. Lyons, Selina & Whale, Jonathan & Wood, Justin, 2018. "Wind power variations during storms and their impact on balancing generators and carbon emissions in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 118(C), pages 1052-1063.
    13. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    14. Stanek, Wojciech & Czarnowska, Lucyna & Pikoń, Krzysztof & Bogacka, Magdalena, 2015. "Thermo-ecological cost of hard coal with inclusion of the whole life cycle chain," Energy, Elsevier, vol. 92(P3), pages 341-348.
    15. Flórez-Orrego, Daniel & Henriques, Izabela B. & Nguyen, Tuong-Van & Mendes da Silva, Julio A. & Keutenedjian Mady, Carlos E. & Pellegrini, Luiz Felipe & Gandolfi, Ricardo & Velasquez, Hector I. & Burb, 2018. "The contributions of Prof. Jan Szargut to the exergy and environmental assessment of complex energy systems," Energy, Elsevier, vol. 161(C), pages 482-492.
    16. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    17. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    18. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    19. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    20. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:341-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.