IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i1p71-85.html
   My bibliography  Save this article

Comparative analysis on the part load performance of combined cycle plants considering design performance and power control strategy

Author

Listed:
  • Kim, T.S.

Abstract

The purpose of this study was to analyze the relationship between the part load performance and design performance of gas turbines and combined cycle plants. The effect of power control strategy on the part load performance of the combined cycle was also examined. The analysis was carried out using a proven cycle simulation program. Based upon the design performances of actual gas turbines, a consistent principle of design point selection was applied to four different gas turbines representing various technology levels. The part load control strategies considered were fuel-only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Since the average combined cycle performance is affected by the range of IGV control, as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted.

Suggested Citation

  • Kim, T.S., 2004. "Comparative analysis on the part load performance of combined cycle plants considering design performance and power control strategy," Energy, Elsevier, vol. 29(1), pages 71-85.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:1:p:71-85
    DOI: 10.1016/S0360-5442(03)00157-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544203001579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00157-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    2. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    3. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    4. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    5. Buttler, Alexander & Kunze, Christian & Spliethoff, Hartmut, 2013. "IGCC–EPI: Decentralized concept of a highly load-flexible IGCC power plant for excess power integration," Applied Energy, Elsevier, vol. 104(C), pages 869-879.
    6. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2006. "Network Constrained Wind Integration: An Optimal Cost Approach," Working Papers 37034, University of Victoria, Resource Economics and Policy.
    7. Stanek, Wojciech & Mendecka, Barbara & Lombardi, Lidia & Simla, Tomasz, 2018. "Environmental assessment of wind turbine systems based on thermo-ecological cost," Energy, Elsevier, vol. 160(C), pages 341-348.
    8. Young-Kwang Park & Seong-Won Moon & Tong-Seop Kim, 2021. "Advanced Control to Improve the Ramp-Rate of a Gas Turbine: Optimization of Control Schedule," Energies, MDPI, vol. 14(23), pages 1-23, December.
    9. Brodrick, Philip G. & Brandt, Adam R. & Durlofsky, Louis J., 2017. "Operational optimization of an integrated solar combined cycle under practical time-dependent constraints," Energy, Elsevier, vol. 141(C), pages 1569-1584.
    10. Sun, Zhixin & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2012. "Dynamic optimal design of a power generation system utilizing industrial waste heat considering parameter fluctuations of exhaust gas," Energy, Elsevier, vol. 44(1), pages 1035-1043.
    11. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    12. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    13. Ziyuan Wang & Xiaodong Ren & Wei Zhu & Xuesong Li & Chunwei Gu, 2023. "Numerical Investigation and Optimization of Variable Guide Vanes Adjustment in a Transonic Compressor," Energies, MDPI, vol. 16(1), pages 1-19, January.
    14. Delattin, F. & De Ruyck, J. & Bram, S., 2009. "Detailed study of the impact of co-utilization of biomass in a natural gas combined cycle power plant through perturbation analysis," Applied Energy, Elsevier, vol. 86(5), pages 622-629, May.
    15. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    16. Brodrick, Philip G. & Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J., 2015. "Optimization of carbon-capture-enabled coal-gas-solar power generation," Energy, Elsevier, vol. 79(C), pages 149-162.
    17. Francesco Gardumi & Manuel Welsch & Mark Howells & Emanuela Colombo, 2019. "Representation of Balancing Options for Variable Renewables in Long-Term Energy System Models: An Application to OSeMOSYS," Energies, MDPI, vol. 12(12), pages 1-22, June.
    18. Möller, Björn Fredriksson & Genrup, Magnus & Assadi, Mohsen, 2007. "On the off-design of a natural gas-fired combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 353-359.
    19. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    20. Kim, T.S. & Hwang, S.H., 2006. "Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy," Energy, Elsevier, vol. 31(2), pages 260-277.
    21. Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J., 2011. "Optimal operation of an integrated energy system including fossil fuel power generation, CO2 capture and wind," Energy, Elsevier, vol. 36(12), pages 6806-6820.
    22. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    23. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    24. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:1:p:71-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.