IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp640-651.html
   My bibliography  Save this article

An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel

Author

Listed:
  • Rimkus, Alfredas
  • Matijošius, Jonas
  • Bogdevičius, Marijonas
  • Bereczky, Ákos
  • Török, Ádám

Abstract

In a vehicle with a CI (compression ignition) engine, the power of the latter rotates an electric generator to produce a mixture of hydrogen (H2) and oxygen (O2) gas (hydrooxile – HHO, later just HHO) by water electrolysis. Low HHO content levels in air (0.14–0.18% of the volume) combined with air in cylinders of the CI engine affect the energy and environmental performance of the engine. It was found through stand tests and numerical modeling that chemically active hydrogen starts to ignite at the end of the compression stroke when the pressure and temperature rise prior to fuel injection into the cylinder. Early hydrogen ignition and supplemental energy consumption for HHO gas production worsen the energy performance of the engine and increase concentrations of carbon dioxide (CO2) and nitrogen oxide (NOx) in the exhaust gas. However, H2 and O2 additives reduce concentrations of incomplete combustion products (carbon monoxide (CO) and hydrocarbons (HC)) as well as the smokiness of the exhaust. When diesel fuel is replaced with biodiesel and when HHO gas is added, the indicated efficiency of the engine changes insignificantly; however, concentrations of CO and HC in the exhaust gas and smoke levels are reduced markedly.

Suggested Citation

  • Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:640-651
    DOI: 10.1016/j.energy.2018.03.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    2. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    3. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    4. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    5. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    6. Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
    7. Saravanan, N. & Nagarajan, G. & Narayanasamy, S., 2008. "An experimental investigation on DI diesel engine with hydrogen fuel," Renewable Energy, Elsevier, vol. 33(3), pages 415-421.
    8. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    9. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    10. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & Wang, Chenguang & Yuan, Haoran, 2017. "Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition," Energy, Elsevier, vol. 126(C), pages 796-809.
    11. Abu-Jrai, Ahmad M. & Al-Muhtaseb, Ala'a H. & Hasan, Ahmad O., 2017. "Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H2, CH4, and conventional diesel)," Energy, Elsevier, vol. 119(C), pages 901-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petr Jindra & Martin Kotek, 2022. "Impacts of HHO gas utilisation on the operating parameters in internal combustion engines," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 150-156.
    2. Gad, M.S. & El-Said, Emad M.S., 2023. "Performance evaluation of PV panels for green HHO gas generation: Energy, exergy, and economic investigation," Energy, Elsevier, vol. 280(C).
    3. István Péter Kondor & Máté Zöldy & Dénes Mihály, 2021. "Experimental Investigation on the Performance and Emission Characteristics of a Compression Ignition Engine Using Waste-Based Tire Pyrolysis Fuel and Diesel Fuel Blends," Energies, MDPI, vol. 14(23), pages 1-9, November.
    4. David Andrej, 2022. "Carbon emission trading as a climate change mitigation tool," Cognitive Sustainability, Cognitive Sustainability Ltd., vol. 1(3), pages 18-23, September.
    5. Alfredas Rimkus & Jonas Matijošius & Sai Manoj Rayapureddy, 2020. "Research of Energy and Ecological Indicators of a Compression Ignition Engine Fuelled with Diesel, Biodiesel (RME-Based) and Isopropanol Fuel Blends," Energies, MDPI, vol. 13(9), pages 1-17, May.
    6. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Kamil Duda & Maciej Mikulski, 2021. "Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE)," Energies, MDPI, vol. 14(11), pages 1-18, May.
    7. Dewangan, Ashish & Mallick, Ashis & Yadav, Ashok Kumar & Islam, Saiful & Saleel, C Ahamed & Shaik, Saboor & Ağbulut, Ümit, 2023. "Production of oxy-hydrogen gas and the impact of its usability on CI engine combustion, performance, and emission behaviors," Energy, Elsevier, vol. 278(PB).
    8. Dhileepan Sekar & Devi Ilangovan & Muhammad Ikhsan Taipabu & Karthickeyan Viswanathan & Wei Wu, 2023. "Influence of Ethanol Blended Diesel Enriched with Hydroxy Gas in Dual-Fuel Mode on Common Rail Direct Injection Engine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    9. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    2. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    3. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    4. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    5. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    6. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    7. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    8. Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
    9. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    10. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    11. Bora, Bhaskor J. & Saha, Ujjwal K., 2016. "Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios," Renewable Energy, Elsevier, vol. 87(P1), pages 782-790.
    12. Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
    13. Chakraborty, Amitav & Biswas, Srijit & Kakati, Dipankar & Banerjee, Rahul, 2022. "Leveraging hydrogen as the low reactive component in the optimization of the PPCI-RCCI transition regimes in an existing diesel engine under varying injection phasing and reactivity stratification str," Energy, Elsevier, vol. 244(PA).
    14. Jemni, Mohamed Ali & Kassem, Sahar Hadj & Driss, Zied & Abid, Mohamed Salah, 2018. "Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine," Energy, Elsevier, vol. 150(C), pages 92-108.
    15. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    16. Akcay, Mehmet & Yilmaz, Ilker Turgut & Feyzioglu, Ahmet, 2020. "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends," Energy, Elsevier, vol. 212(C).
    17. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
    18. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    19. Obed M. Ali & Rizalman Mamat & Gholamhassan Najafi & Talal Yusaf & Seyed Mohammad Safieddin Ardebili, 2015. "Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods," Energies, MDPI, vol. 8(12), pages 1-15, December.
    20. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:640-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.