IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp536-544.html
   My bibliography  Save this article

Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars

Author

Listed:
  • Fockink, Douglas H.
  • Morais, Ana R.C.
  • Ramos, Luiz P.
  • Łukasik, Rafał M.

Abstract

This work provides an insight into sugarcane bagasse pre-treatment carried out with greener and more sustainable CO2/H2O system. Temperatures and residence times at a fixed initial CO2 pressure were studied to verify their effects on pre-treatment efficiency with regard to the chemical composition of both water-soluble and water-insoluble fractions as well as to the susceptibility of the latter to enzymatic hydrolysis at high total solids. Also, trends in enzymatic hydrolysis were analysed in function of biomass crystallinity. This work provides an integrated approach in the analysis of upgradable sugars that are released as a result of pre-treatment and enzymatic hydrolysis. At optimal pre-treatment conditions, 17.2 g⋅L−1 sugars were released in the water-soluble fraction mainly as pentoses in monomeric and oligomeric forms. The enzymatic hydrolysis of solids produced at these pre-treatment conditions gave 76.8 g⋅L−1 glucose in the substrate hydrolysate. The overall sugar yield delivered in both pre-treatment and enzymatic hydrolysis was 73.9 mol%. These results were compared to the chemical effect of hydrothermal and/or physico-chemical effects of N2-aided hydrothermal processes and showed that the greener processing of biomass pre-treatment with CO2 is advantageous for the integrated valorisation of industrial residues and delivery of upgradable sugars within the biorefinery concept.

Suggested Citation

  • Fockink, Douglas H. & Morais, Ana R.C. & Ramos, Luiz P. & Łukasik, Rafał M., 2018. "Insight into the high-pressure CO2 pre-treatment of sugarcane bagasse for a delivery of upgradable sugars," Energy, Elsevier, vol. 151(C), pages 536-544.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:536-544
    DOI: 10.1016/j.energy.2018.03.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David H. Doehlert, 1970. "Uniform Shell Designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 19(3), pages 231-239, November.
    2. Ruiz, Héctor A. & Rodríguez-Jasso, Rosa M. & Fernandes, Bruno D. & Vicente, António A. & Teixeira, José A., 2013. "Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 35-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguirre-Fierro, Arelí & Ruiz, Héctor A. & Cerqueira, Miguel A. & Ramos-González, Rodolfo & Rodríguez-Jasso, Rosa M. & Marques, Susana & Lukasik, Rafal M., 2020. "Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production," Renewable Energy, Elsevier, vol. 155(C), pages 1347-1354.
    2. Qaseem, Mirza Faisal & Shaheen, Humaira & Wu, Ai-Min, 2021. "Cell wall hemicellulose for sustainable industrial utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    3. Kouteu Nanssou, Paul Alain & Jiokap Nono, Yvette & Kapseu, César, 2016. "Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process," Renewable Energy, Elsevier, vol. 97(C), pages 252-265.
    4. Corton, J. & Donnison, I.S. & Ross, A.B. & Lea-Langton, A.R. & Wachendorf, M. & Fraser, M.D., 2021. "Impact of vegetation type and pre-processing on product yields and properties following hydrothermal conversion of conservation biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
    6. Cuevas, Manuel & Sánchez, Sebastián & García, Juan F. & Baeza, Jaime & Parra, Carolina & Freer, Juanita, 2015. "Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones," Renewable Energy, Elsevier, vol. 74(C), pages 839-847.
    7. Zhang, Mei & Zhou, Yong-Dao, 2016. "Spherical discrepancy for designs on hyperspheres," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 226-234.
    8. Giacomo Fabbrizi & Tommaso Giannoni & Leonardo Lorenzi & Andrea Nicolini & Paola Iodice & Valentina Coccia & Gianluca Cavalaglio & Mattia Gelosia, 2022. "High Solid and Low Cellulase Enzymatic Hydrolysis of Cardoon Stems Pretreated by Acidified γ-Valerolactone/Water Solution," Energies, MDPI, vol. 15(7), pages 1-12, April.
    9. Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
    10. Franco Cotana & Gianluca Cavalaglio & Anna Laura Pisello & Mattia Gelosia & David Ingles & Enrico Pompili, 2015. "Sustainable Ethanol Production from Common Reed ( Phragmites australis ) through Simultaneuos Saccharification and Fermentation," Sustainability, MDPI, vol. 7(9), pages 1-15, September.
    11. Marcela Sofia Pino & Michele Michelin & Rosa M. Rodríguez-Jasso & Alfredo Oliva-Taravilla & José A. Teixeira & Héctor A. Ruiz, 2021. "Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse," Energies, MDPI, vol. 14(16), pages 1-16, August.
    12. Gianluca Cavalaglio & Mattia Gelosia & Silvia D’Antonio & Andrea Nicolini & Anna Laura Pisello & Marco Barbanera & Franco Cotana, 2016. "Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-10, August.
    13. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    14. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    15. Déniel, Maxime & Haarlemmer, Geert & Roubaud, Anne & Weiss-Hortala, Elsa & Fages, Jacques, 2016. "Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1632-1652.
    16. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Mateusz Wnukowski & Przemysław Seruga & Marcin Baranowski & Halina Pawlak-Kruczek & Monika Serafin-Tkaczuk & Krystian Krochmalny & Lukasz Niedzwi, 2020. "Treatment of Liquid By-Products of Hydrothermal Carbonization (HTC) of Agricultural Digestate Using Membrane Separation," Energies, MDPI, vol. 13(1), pages 1-12, January.
    17. Thiruvenkadam, Selvakumar & Izhar, Shamsul & Yoshida, Hiroyuki & Danquah, Michael K. & Harun, Razif, 2015. "Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production," Applied Energy, Elsevier, vol. 154(C), pages 815-828.
    18. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    19. Kumagai, Akio & Wu, Long & Iwamoto, Shinichiro & Lee, Seung-Hwan & Endo, Takashi & Rodriguez, Miguel & Mielenz, Jonathan R., 2015. "Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wet disk milling," Renewable Energy, Elsevier, vol. 76(C), pages 782-789.
    20. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:536-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.