IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp871-885.html
   My bibliography  Save this article

An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources

Author

Listed:
  • Sun, M.
  • Teng, F.
  • Konstantelos, I.
  • Strbac, G.

Abstract

Transmission Network Expansion Planning (TNEP) in modern electricity systems is carried out on a cost-benefit analysis basis; the planner identifies investments that maximize the social welfare. As the integration of Renewable Energy Sources (RES) increases, there is a real challenge to accurately capture the vast variability that characterizes system operation within a planning problem. Conventional approaches that rely on a large number of scenarios for representing the variability of operating points can quickly lead to computational issues. An alternative approach that is becoming increasingly necessary is to select representative scenarios from the original population via clustering techniques. However, direct clustering of operating points in the input domain may not capture characteristics which are important for investment decision-making. This paper presents a novel objective-based scenario selection framework for TNEP to obtain optimal investment decisions with a significantly reduced number of operating states. Different clustering frameworks, clustering variable s and clustering techniques are compared to determine the most appropriate approach. The superior performance of the proposed framework is demonstrated through a case study on a modified IEEE 118-bus system.

Suggested Citation

  • Sun, M. & Teng, F. & Konstantelos, I. & Strbac, G., 2018. "An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources," Energy, Elsevier, vol. 145(C), pages 871-885.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:871-885
    DOI: 10.1016/j.energy.2017.12.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2013. "State-of-the-art of transmission expansion planning: Comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 312-319.
    2. Al-Shammari, Eiman Tamah & Shamshirband, Shahaboddin & Petković, Dalibor & Zalnezhad, Erfan & Yee, Por Lip & Taher, Ros Suraya & Ćojbašić, Žarko, 2016. "Comparative study of clustering methods for wake effect analysis in wind farm," Energy, Elsevier, vol. 95(C), pages 573-579.
    3. Tabandeh, Abbas & Abdollahi, Amir & Rashidinejad, Masoud, 2016. "Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures," Energy, Elsevier, vol. 104(C), pages 213-228.
    4. Viegas, Joaquim L. & Vieira, Susana M. & Melício, R. & Mendes, V.M.F. & Sousa, João M.C., 2016. "Classification of new electricity customers based on surveys and smart metering data," Energy, Elsevier, vol. 107(C), pages 804-817.
    5. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
    6. MacRae, C.A.G. & Ernst, A.T. & Ozlen, M., 2016. "A Benders decomposition approach to transmission expansion planning considering energy storage," Energy, Elsevier, vol. 112(C), pages 795-803.
    7. Yu, L. & Li, Y.P. & Huang, G.H., 2016. "A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China," Energy, Elsevier, vol. 98(C), pages 190-203.
    8. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    9. Chicco, Gianfranco, 2012. "Overview and performance assessment of the clustering methods for electrical load pattern grouping," Energy, Elsevier, vol. 42(1), pages 68-80.
    10. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    11. Mohammadi, Sirus & Mozafari, Babak & Solimani, Soodabeh & Niknam, Taher, 2013. "An Adaptive Modified Firefly Optimisation Algorithm based on Hong's Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties," Energy, Elsevier, vol. 51(C), pages 339-348.
    12. Grigoras, Gheorghe & Scarlatache, Florina, 2015. "An assessment of the renewable energy potential using a clustering based data mining method. Case study in Romania," Energy, Elsevier, vol. 81(C), pages 416-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Aaron & Miller, Wendy & Cholette, Michael E. & Ledwich, Gerard & Crompton, Glenn & Li, Yong, 2021. "A multi-dimension clustering-based method for renewable energy investment planning," Renewable Energy, Elsevier, vol. 172(C), pages 651-666.
    2. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    3. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    4. Mohamed M. Refaat & Shady H. E. Abdel Aleem & Yousry Atia & Ziad M. Ali & Adel El-Shahat & Mahmoud M. Sayed, 2021. "A Mathematical Approach to Simultaneously Plan Generation and Transmission Expansion Based on Fault Current Limiters and Reliability Constraints," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    5. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Henao, Alvin & Sauma, Enzo & Gonzalez, Angel, 2018. "Impact of introducing flexibility in the Colombian transmission expansion planning," Energy, Elsevier, vol. 157(C), pages 131-140.
    7. Maria Dicorato & Gioacchino Tricarico & Giuseppe Forte & Francesca Marasciuolo, 2021. "Technical Indicators for the Comparison of Power Network Development in Scenario Evaluations," Energies, MDPI, vol. 14(14), pages 1-25, July.
    8. Julien Keutchayan & Janosch Ortmann & Walter Rei, 2023. "Problem-driven scenario clustering in stochastic optimization," Computational Management Science, Springer, vol. 20(1), pages 1-33, December.
    9. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    10. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chidean, Mihaela I. & Caamaño, Antonio J. & Ramiro-Bargueño, Julio & Casanova-Mateo, Carlos & Salcedo-Sanz, Sancho, 2018. "Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2684-2694.
    2. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    3. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Jieyi Kang & David Reiner, 2021. "Identifying residential consumption patterns using data-mining techniques: A large-scale study of smart meter data in Chengdu, China," Working Papers EPRG2114, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Rajabi, Amin & Eskandari, Mohsen & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Siano, Pierluigi, 2020. "A comparative study of clustering techniques for electrical load pattern segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    7. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
    9. Zigui Jiang & Rongheng Lin & Fangchun Yang, 2018. "A Hybrid Machine Learning Model for Electricity Consumer Categorization Using Smart Meter Data," Energies, MDPI, vol. 11(9), pages 1-19, August.
    10. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    11. Zolfaghari, Saeed & Akbari, Tohid, 2018. "Bilevel transmission expansion planning using second-order cone programming considering wind investment," Energy, Elsevier, vol. 154(C), pages 455-465.
    12. Gouveia, João Pedro & Seixas, Júlia & Mestre, Ana, 2017. "Daily electricity consumption profiles from smart meters - Proxies of behavior for space heating and cooling," Energy, Elsevier, vol. 141(C), pages 108-122.
    13. Mario Flor & Sergio Herraiz & Ivan Contreras, 2021. "Definition of Residential Power Load Profiles Clusters Using Machine Learning and Spatial Analysis," Energies, MDPI, vol. 14(20), pages 1-15, October.
    14. Trotta, Gianluca, 2020. "An empirical analysis of domestic electricity load profiles: Who consumes how much and when?," Applied Energy, Elsevier, vol. 275(C).
    15. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    16. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    17. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.
    18. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    20. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:871-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.