IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp86-98.html
   My bibliography  Save this article

Development of a semi-empirical equilibrium model for downdraft gasification systems

Author

Listed:
  • Aydin, Ebubekir Siddik
  • Yucel, Ozgun
  • Sadikoglu, Hasan

Abstract

This study proposes a stoichiometric equilibrium model (SEM) to predict the chemical composition of the syngas, yield of tar and char produced by a downdraft gasifier for various wood based fuels for different equivalence ratios (ER). Equivalence ratio is a measure of the amount of external air supplied to the gasifier and one of the crucial operating variables in biomass gasification. Global stoichiometric equilibrium approach is used to model a downdraft gasifier. In order to predict dry gas composition, three different SEM models have been developed. Those models were validated and modified through comparison with the large amount of data collected from various sources. We have introduced two correction factors for altering the equilibrium constant of methanation and the water-gas shift reaction as a function of gasification temperature, equilibrium temperature and ER. Those correction factors were obtained by comparison of the theoretical models with experimental data of downdraft gasification of woody biomass from literature by using Levenberg-Marquadt algorithm. The modified model shows a clear enhancement in the prediction of the concentration for all gaseous species in the producer gas and tar yield. Furthermore, sensitivity analysis for SEM models has been performed using different higher heating value correlation for woody biomass.

Suggested Citation

  • Aydin, Ebubekir Siddik & Yucel, Ozgun & Sadikoglu, Hasan, 2017. "Development of a semi-empirical equilibrium model for downdraft gasification systems," Energy, Elsevier, vol. 130(C), pages 86-98.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:86-98
    DOI: 10.1016/j.energy.2017.04.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erlich, Catharina & Fransson, Torsten H., 2011. "Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study," Applied Energy, Elsevier, vol. 88(3), pages 899-908, March.
    2. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    3. Jarungthammachote, S. & Dutta, A., 2007. "Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier," Energy, Elsevier, vol. 32(9), pages 1660-1669.
    4. Beenackers, A.A.C.M., 1999. "Biomass gasification in moving beds, a review of European technologies," Renewable Energy, Elsevier, vol. 16(1), pages 1180-1186.
    5. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    6. Baruah, Dipal & Baruah, D.C., 2014. "Modeling of biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 806-815.
    7. Stendardo, Stefano & Foscolo, Pier Ugo & Nobili, Mirko & Scaccia, Silvera, 2016. "High quality syngas production via steam-oxygen blown bubbling fluidised bed gasifier," Energy, Elsevier, vol. 103(C), pages 697-708.
    8. Mendiburu, Andrés Z. & Carvalho, João A. & Zanzi, Rolando & Coronado, Christian R. & Silveira, José L., 2014. "Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models," Energy, Elsevier, vol. 71(C), pages 624-637.
    9. Azzone, Emanuele & Morini, Mirko & Pinelli, Michele, 2012. "Development of an equilibrium model for the simulation of thermochemical gasification and application to agricultural residues," Renewable Energy, Elsevier, vol. 46(C), pages 248-254.
    10. Dogru, M. & Howarth, C.R. & Akay, G. & Keskinler, B. & Malik, A.A., 2002. "Gasification of hazelnut shells in a downdraft gasifier," Energy, Elsevier, vol. 27(5), pages 415-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    2. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Qian, Hongliang & Chen, Wei & Zhu, Weiwei & Liu, Chang & Lu, Xiaohua & Guo, Xiaojing & Huang, Dechun & Liang, Xiaodong & Kontogeorgis, Georgios M., 2019. "Simulation and evaluation of utilization pathways of biomasses based on thermodynamic data prediction," Energy, Elsevier, vol. 173(C), pages 610-625.
    4. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    5. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    7. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    8. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1, October.
    9. Mutlu, Ali Yener & Yucel, Ozgun, 2018. "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification," Energy, Elsevier, vol. 165(PA), pages 895-901.
    10. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    11. HajiHashemi, MohammadSina & Mazhkoo, Shahin & Dadfar, Hossein & Livani, Ehsan & Naseri Varnosefaderani, Aliakbar & Pourali, Omid & Najafi Nobar, Shima & Dutta, Animesh, 2023. "Combined heat and power production in a pilot-scale biomass gasification system: Experimental study and kinetic simulation using ASPEN Plus," Energy, Elsevier, vol. 276(C).
    12. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    13. Huang, Y.W. & Chen, M.Q. & Li, Q.H. & Xing, W., 2018. "Hydrogen-rich syngas produced from co-gasification of wet sewage sludge and torrefied biomass in self-generated steam agent," Energy, Elsevier, vol. 161(C), pages 202-213.
    14. Gambarotta, Agostino & Morini, Mirko & Zubani, Andrea, 2018. "A non-stoichiometric equilibrium model for the simulation of the biomass gasification process," Applied Energy, Elsevier, vol. 227(C), pages 119-127.
    15. Ibrahim, A. & Veremieiev, S. & Gaskell, P.H., 2022. "An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 912-925.
    16. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    17. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Non-Stoichiometric Thermodynamic Models for the Downdraft Biomass Gasification," Energies, MDPI, vol. 13(21), pages 1-17, October.
    18. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.
    19. Tomasz Chmielniak & Leszek Stepien & Marek Sciazko & Wojciech Nowak, 2021. "Effect of Pyrolysis Reactions on Coal and Biomass Gasification Process," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    3. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    4. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    5. Silva, Isabelly P. & Lima, Rafael M.A. & Santana, Hortência E.P. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2022. "Development of a semi-empirical model for woody biomass gasification based on stoichiometric thermodynamic equilibrium model," Energy, Elsevier, vol. 241(C).
    6. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Non-Stoichiometric Thermodynamic Models for the Downdraft Biomass Gasification," Energies, MDPI, vol. 13(21), pages 1-17, October.
    7. Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
    8. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    9. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    10. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Stoichiometric Thermodynamic Models for Downdraft Biomass Gasification," Energies, MDPI, vol. 13(20), pages 1, October.
    11. Ibrahim, A. & Veremieiev, S. & Gaskell, P.H., 2022. "An advanced, comprehensive thermochemical equilibrium model of a downdraft biomass gasifier," Renewable Energy, Elsevier, vol. 194(C), pages 912-925.
    12. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    13. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    14. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    15. Safarian, Sahar & Unnthorsson, Runar & Richter, Christiaan, 2020. "The equivalence of stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.
    17. Qitai Eri & Wenzhen Wu & Xinjun Zhao, 2017. "Numerical Investigation of the Air-Steam Biomass Gasification Process Based on Thermodynamic Equilibrium Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    18. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    19. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    20. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:86-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.