IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip2p492-505.html
   My bibliography  Save this article

Parametric study of a cost-optimal, energy efficient office building in Serbia

Author

Listed:
  • Stevanović, Sanja

Abstract

Recent building regulations in Serbia prescribe the design of highly insulated, airtight buildings with low U-value glazing. Serbia has continental climate with hot summers, so that for office buildings, whose internal gains are higher from the presence of people, computer systems and lighting, this means that far more focus has to be put on cooling demands than on heating demands. This shift toward cooling is studied here through exhaustive simulation of combinations of selected passive solar design parameters for a model of an office building in Belgrade. Design parameters include glazing type, window-to-wall ratio of façades, presence of exterior shading and U-value of opaque envelope components. Optimal variants of the model have been determined with respect to construction cost and heating, cooling and lighting energy use. Results reveal that exterior shading, which has to sustain occasional strong winds in Belgrade, is too expensive to appear in cost-optimal solutions. Hot summers of Belgrade climate imply that cost-optimal solutions have close-to-minimal window-to-wall ratio at the southern façade and significantly larger window-to-wall ratio at the northern façade. Results further show that glazing in cost-optimal solutions has to have small U-value and medium solar heat gain coefficient, although specific choices of optimal glazing type, as well as thermal insulation level, depend on future electricity prices. The case study is repeated for climates of Frankfurt and Stockholm as well, which yield similar results with respect to glazing type and the absence of exterior shading, but with different patterns of window-to-wall ratios at the southern and northern façades.

Suggested Citation

  • Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:492-505
    DOI: 10.1016/j.energy.2016.06.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    2. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    3. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    4. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    5. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    6. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    7. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    8. Li, D.H.W & Lam, J.C & Wong, S.L, 2002. "Daylighting and its implications to overall thermal transfer value (OTTV) determinations," Energy, Elsevier, vol. 27(11), pages 991-1008.
    9. Lam, Joseph C & Li, Danny H.W, 1998. "Daylighting and energy analysis for air-conditioned office buildings," Energy, Elsevier, vol. 23(2), pages 79-89.
    10. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.
    11. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    12. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    13. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    2. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    3. Zhijian Liu & Di Wu & Miao Jiang & Hancheng Yu & Wensheng Ma, 2017. "Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case," Energies, MDPI, vol. 10(11), pages 1-12, October.
    4. Luka Djordjević & Jasmina Pekez & Borivoj Novaković & Mihalj Bakator & Mića Djurdjev & Dragan Ćoćkalo & Saša Jovanović, 2023. "Increasing Energy Efficiency of Buildings in Serbia—A Case of an Urban Neighborhood," Sustainability, MDPI, vol. 15(7), pages 1-20, April.
    5. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    2. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    3. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    5. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    6. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    7. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    8. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    9. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    10. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    11. Olivieri, L. & Caamaño-Martín, E. & Moralejo-Vázquez, F.J. & Martín-Chivelet, N. & Olivieri, F. & Neila-Gonzalez, F.J., 2014. "Energy saving potential of semi-transparent photovoltaic elements for building integration," Energy, Elsevier, vol. 76(C), pages 572-583.
    12. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    13. Malvoni, Maria & Baglivo, Cristina & Congedo, Paolo Maria & Laforgia, Domenico, 2016. "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077," Energy, Elsevier, vol. 111(C), pages 430-438.
    14. Sadaf Alam & Miimu Airaksinen & Risto Lahdelma, 2021. "Attitudes and Approaches of Finnish Retrofit Industry Stakeholders toward Achieving Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    15. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    16. Joanna Rucińska & Adrian Trząski, 2020. "Measurements and Simulation Study of Daylight Availability and Its Impact on the Heating, Cooling and Lighting Energy Demand in an Educational Building," Energies, MDPI, vol. 13(10), pages 1-16, May.
    17. Giuliano Dall'O' & Valentina Belli & Mauro Brolis & Ivan Mozzi & Mauro Fasano, 2013. "Nearly Zero-Energy Buildings of the Lombardy Region (Italy), a Case Study of High-Energy Performance Buildings," Energies, MDPI, vol. 6(7), pages 1-22, July.
    18. Yang, Liu & Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "A new method to develop typical weather years in different climates for building energy use studies," Energy, Elsevier, vol. 36(10), pages 6121-6129.
    19. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    20. Fokaides, Paris A. & Christoforou, Elias A. & Kalogirou, Soteris A., 2014. "Legislation driven scenarios based on recent construction advancements towards the achievement of nearly zero energy dwellings in the southern European country of Cyprus," Energy, Elsevier, vol. 66(C), pages 588-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p2:p:492-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.