IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp430-438.html
   My bibliography  Save this article

CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077

Author

Listed:
  • Malvoni, Maria
  • Baglivo, Cristina
  • Congedo, Paolo Maria
  • Laforgia, Domenico

Abstract

The main goal of the EPBD (Energy Performance Buildings Directive) is the improvement of the energy performance of the European buildings. The internal comfort is critically dependent on the envelope that plays a key role in the thermal balance of the entire building. In particular, the windows are one of the most critical elements in terms of solar gains, heat losses and thermal bridges; therefore, the design of high efficiency frames is requested, both in cold and warm climate, but with different peculiarity. The UNI EN ISO 10077-2 provides a methodology to evaluate the frame thermal behaviour and it proposes the criteria to validate the numerical model.

Suggested Citation

  • Malvoni, Maria & Baglivo, Cristina & Congedo, Paolo Maria & Laforgia, Domenico, 2016. "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077," Energy, Elsevier, vol. 111(C), pages 430-438.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:430-438
    DOI: 10.1016/j.energy.2016.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    2. Baglivo, Cristina & Congedo, Paolo Maria, 2015. "Design method of high performance precast external walls for warm climate by multi-objective optimization analysis," Energy, Elsevier, vol. 90(P2), pages 1645-1661.
    3. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    4. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
    5. Desideri, Umberto & Arcioni, Livia & Leonardi, Daniela & Cesaretti, Luca & Perugini, Perla & Agabitini, Elena & Evangelisti, Nicola, 2013. "Design of a multipurpose “zero energy consumption” building according to European Directive 2010/31/EU: Architectural and technical plants solutions," Energy, Elsevier, vol. 58(C), pages 157-167.
    6. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    7. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    8. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    9. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Baglivo & Marina Bonomolo & Paolo Maria Congedo, 2019. "Modeling of Light Pipes for the Optimal Disposition in Buildings," Energies, MDPI, vol. 12(22), pages 1-28, November.
    2. Sanghoon Baek & Sangchul Kim, 2020. "Potential Effects of Vacuum Insulating Glazing Application for Reducing Greenhouse Gas Emission (GHGE) from Apartment Buildings in the Korean Capital Region," Energies, MDPI, vol. 13(11), pages 1-15, June.
    3. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    4. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.
    5. Cristina Baglivo, 2021. "Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    6. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    7. Delia D’Agostino & Ilaria Zacà & Cristina Baglivo & Paolo Maria Congedo, 2017. "Economic and Thermal Evaluation of Different Uses of an Existing Structure in a Warm Climate," Energies, MDPI, vol. 10(5), pages 1-29, May.
    8. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    9. Marcin Brzezicki, 2021. "A Systematic Review of the Most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
    10. Paolo Maria Congedo & Cristina Baglivo & Giovanni Quarta & Pasquale Di Gloria & Delia D’Agostino, 2022. "Definition of a Protocol for the Experimental Monitoring of Rising Damp in Three Different Masonry Models with Tuff, Carparo, and Lecce Stone," Energies, MDPI, vol. 15(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    2. Delia D’Agostino & Ilaria Zacà & Cristina Baglivo & Paolo Maria Congedo, 2017. "Economic and Thermal Evaluation of Different Uses of an Existing Structure in a Warm Climate," Energies, MDPI, vol. 10(5), pages 1-29, May.
    3. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    4. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    5. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    6. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Sadaf Alam & Miimu Airaksinen & Risto Lahdelma, 2021. "Attitudes and Approaches of Finnish Retrofit Industry Stakeholders toward Achieving Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    8. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.
    9. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    10. Thalfeldt, Martin & Pikas, Ergo & Kurnitski, Jarek & Voll, Hendrik, 2017. "Window model and 5 year price data sensitivity to cost-effective façade solutions for office buildings in Estonia," Energy, Elsevier, vol. 135(C), pages 685-697.
    11. Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
    12. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    13. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    14. Iole Nardi & Elena Lucchi, 2023. "In Situ Thermal Transmittance Assessment of the Building Envelope: Practical Advice and Outlooks for Standard and Innovative Procedures," Energies, MDPI, vol. 16(8), pages 1-31, April.
    15. Araújo, Catarina & Almeida, Manuela & Bragança, Luís & Barbosa, José Amarilio, 2016. "Cost–benefit analysis method for building solutions," Applied Energy, Elsevier, vol. 173(C), pages 124-133.
    16. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    17. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    18. Yang, Jing & Wu, Jingli & He, Tao & Li, Lingyue & Han, Dezhi & Wang, Zhiqi & Wu, Jinhu, 2016. "Energy gases and related carbon emissions in China," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 140-148.
    19. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    20. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.

    More about this item

    Keywords

    CFD; Thermal break; Window; Frame; 10077; EPBD;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:430-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.