IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v117y2016ip1p251-258.html
   My bibliography  Save this article

Soft Independent Modelling of Class Analogy applied to infrared spectroscopy for rapid discrimination between hardwood and softwood

Author

Listed:
  • Duca, D.
  • Mancini, M.
  • Rossini, G.
  • Mengarelli, C.
  • Foppa Pedretti, E.
  • Toscano, G.
  • Pizzi, A.

Abstract

European policy promotes renewable energies and sets specific targets. Solid biofuels can play a significant role and the quality is an important aspect to be checked. Quality parameters such as origin and source are also required by specific biofuel standards. Therefore it could be useful to develop a rapid and cheap tool to distinguish between hardwoods and softwoods especially in unstructured, milled or densified wood in order to check the compliance of producer's declarations. Compared to other analytical methods, infrared spectroscopy is fast, non-destructive and low cost. In this study Fourier transform infrared (FTIR) spectroscopy coupled with Soft Independent Modelling of Class Analogy (SIMCA) has been evaluated as a method for discrimination purpose. A large dataset of 110 wood samples belonging to 12 species were analysed. In addition 4 blends were also analysed to test the discrimination performance of the tool. FTIR-SIMCA has correctly classified 93% of hardwood samples and 100% of softwood samples at high significance level. Furthermore, 100% of tested blends were associated with no class, showing a discrimination ability of the technique in recognizing blends from pure material. This method could be useful to verify the compliance of producer declarations about wood origin and source.

Suggested Citation

  • Duca, D. & Mancini, M. & Rossini, G. & Mengarelli, C. & Foppa Pedretti, E. & Toscano, G. & Pizzi, A., 2016. "Soft Independent Modelling of Class Analogy applied to infrared spectroscopy for rapid discrimination between hardwood and softwood," Energy, Elsevier, vol. 117(P1), pages 251-258.
  • Handle: RePEc:eee:energy:v:117:y:2016:i:p1:p:251-258
    DOI: 10.1016/j.energy.2016.10.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    2. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    3. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    4. Sgarbossa, Andrea & Costa, Corrado & Menesatti, Paolo & Antonucci, Francesca & Pallottino, Federico & Zanetti, Michela & Grigolato, Stefano & Cavalli, Raffaele, 2015. "A multivariate SIMCA index as discriminant in wood pellet quality assessment," Renewable Energy, Elsevier, vol. 76(C), pages 258-263.
    5. Lupoi, Jason S. & Singh, Seema & Parthasarathi, Ramakrishnan & Simmons, Blake A. & Henry, Robert J., 2015. "Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 871-906.
    6. Toscano, G. & Duca, D. & Rossini, G. & Mengarelli, C. & Pizzi, A., 2015. "Identification of different woody biomass for energy purpose by means of Soft Independent Modeling of Class Analogy applied to thermogravimetric analysis," Energy, Elsevier, vol. 83(C), pages 351-357.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Leoni & Thomas Gasperini & Nicolò Di Marzio & Rodolfo Picchio & Giuseppe Toscano & Daniele Duca, 2024. "Application of Near Infrared Spectroscopy for the Detection of Chemically Treated Pellets Unsuitable for Combustion," Energies, MDPI, vol. 17(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2016. "Wood pellets as a sustainable energy alternative in Portugal," Renewable Energy, Elsevier, vol. 85(C), pages 1011-1016.
    2. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    3. Pietro Pandolfi & Ivan Notardonato & Sergio Passarella & Maria Pia Sammartino & Giovanni Visco & Paolo Ceci & Loretta De Giorgi & Virgilio Stillittano & Domenico Monci & Pasquale Avino, 2023. "Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach," IJERPH, MDPI, vol. 20(16), pages 1-14, August.
    4. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.
    5. Luigi F. Polonini & Domenico Petrocelli & Simone P. Parmigiani & Adriano M. Lezzi, 2019. "Influence on CO and PM Emissions of an Innovative Burner Pot for Pellet Stoves: An Experimental Study," Energies, MDPI, vol. 12(4), pages 1-13, February.
    6. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    7. Sirisomboon, Panmanas & Funke, Axel & Posom, Jetsada, 2020. "Improvement of proximate data and calorific value assessment of bamboo through near infrared wood chips acquisition," Renewable Energy, Elsevier, vol. 147(P1), pages 1921-1931.
    8. Xiaodan Liu & Xuping Feng & Lingxia Huang & Yong He, 2020. "Rapid Determination of Wood and Rice Husk Pellets’ Proximate Analysis and Heating Value," Energies, MDPI, vol. 13(14), pages 1-13, July.
    9. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Ahmad Rashedi & Irfan Ullah Muhammadi & Rana Hadi & Syeda Ghufrana Nadeem & Nasreen Khan & Farzana Ibrahim & Mohamad Zaki Hassan & Taslima Khanam & Byongug Jeong & Majid Hussain, 2022. "Characterization and Life Cycle Exergo-Environmental Analysis of Wood Pellet Biofuel Produced in Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    11. Zhang, Ke & Zhou, Ling & Brady, Michael & Xu, Feng & Yu, Jianming & Wang, Donghai, 2017. "Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy," Energy, Elsevier, vol. 118(C), pages 1353-1360.
    12. Proskurina, Svetlana & Rimppi, Heli & Heinimö, Jussi & Hansson, Julia & Orlov, Anton & Raghu, KC & Vakkilainen, Esa, 2016. "Logistical, economic, environmental and regulatory conditions for future wood pellet transportation by sea to Europe: The case of Northwest Russian seaports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 38-50.
    13. Cindy Nereida Morales-Máximo & Luis Bernardo López-Sosa & José Guadalupe Rutiaga-Quiñones & Juan Carlos Corral-Huacuz & Arturo Aguilera-Mandujano & Luis Fernando Pintor-Ibarra & Armando López-Miranda , 2022. "Characterization of Agricultural Residues of Zea mays for Their Application as Solid Biofuel: Case Study in San Francisco Pichátaro, Michoacán, Mexico," Energies, MDPI, vol. 15(19), pages 1-16, September.
    14. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    15. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    16. Asina, FNU & Brzonova, Ivana & Kozliak, Evguenii & Kubátová, Alena & Ji, Yun, 2017. "Microbial treatment of industrial lignin: Successes, problems and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1179-1205.
    17. Proskurina, Svetlana & Alakangas, Eija & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2017. "A survey analysis of the wood pellet industry in Finland: Future perspectives," Energy, Elsevier, vol. 118(C), pages 692-704.
    18. Daniele Duca & Giuseppe Toscano, 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability," Resources, MDPI, vol. 11(6), pages 1-6, June.
    19. Liu, Xiaodan & Feng, Xuping & He, Yong, 2019. "Rapid discrimination of the categories of the biomass pellets using laser-induced breakdown spectroscopy," Renewable Energy, Elsevier, vol. 143(C), pages 176-182.
    20. Alessandro Casasso & Pietro Capodaglio & Fulvio Simonetto & Rajandrea Sethi, 2019. "Environmental and Economic Benefits from the Phase-out of Residential Oil Heating: A Study from the Aosta Valley Region (Italy)," Sustainability, MDPI, vol. 11(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:117:y:2016:i:p1:p:251-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.