IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp160-179.html
   My bibliography  Save this article

Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries

Author

Listed:
  • Akinyele, Daniel O.
  • Rayudu, Ramesh K.

Abstract

This paper presents detailed techno-economic and environmental analyses of a SPM (solar photovoltaic microgrid) for remote communities. The SPM is modeled to support a yearly load growth of 2% over a project life of 25 years, with a base case demand of 63,875 kWh/yr. The PV and the battery performances are carefully evaluated. We use the unmet demand, loss of energy probability and the availability indices to determine the system reliability. LCC (Life cycle cost) and LCI (life cycle impact) analyses are used to assess the economic and the environmental performances of the SPM. A small community in Gusau, Zamfara State, Nigeria is used as a case study, and we obtained SPM capacities of 55–82.5 kW with availability values of 96.86–98.74%. The life cycle costs of the SPMs range from 425,500 to $ 470,472, which is about 47–50% of the values obtained for the diesel power system. The emission rate of 56.7 gCO2-eq/kWh is obtained, which is 8.15–9.84% of the emission rates of the diesel system. The global warming potential of the SPM systems ranges from 5178 to 7765 kgCO2-eq, while the energy payback time and the energy return on investment are ∼1.46 years and 17, respectively. These results can be useful for conceptualizing and planning PV microgrids in developing countries.

Suggested Citation

  • Akinyele, Daniel O. & Rayudu, Ramesh K., 2016. "Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries," Energy, Elsevier, vol. 109(C), pages 160-179.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:160-179
    DOI: 10.1016/j.energy.2016.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    2. Shen, W.X., 2009. "Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia," Renewable Energy, Elsevier, vol. 34(1), pages 348-352.
    3. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    4. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    5. Oparaku, O.U., 2003. "Rural area power supply in Nigeria: A cost comparison of the photovoltaic, diesel/gasoline generator and grid utility options," Renewable Energy, Elsevier, vol. 28(13), pages 2089-2098.
    6. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2015. "Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 112-139.
    7. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    8. Lau, K.Y. & Yousof, M.F.M. & Arshad, S.N.M. & Anwari, M. & Yatim, A.H.M., 2010. "Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions," Energy, Elsevier, vol. 35(8), pages 3245-3255.
    9. Fragaki, A. & Markvart, T., 2008. "Stand-alone PV system design: Results using a new sizing approach," Renewable Energy, Elsevier, vol. 33(1), pages 162-167.
    10. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    11. Diaf, S. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island," Energy Policy, Elsevier, vol. 36(2), pages 743-754, February.
    12. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    13. Rahman, Md. Mustafizur & Khan, Md. Mohib-Ul-Haque & Ullah, Mohammad Ahsan & Zhang, Xiaolei & Kumar, Amit, 2016. "A hybrid renewable energy system for a North American off-grid community," Energy, Elsevier, vol. 97(C), pages 151-160.
    14. Cloutier, Michael & Rowley, Paul, 2011. "The feasibility of renewable energy sources for pumping clean water in sub-Saharan Africa: A case study for Central Nigeria," Renewable Energy, Elsevier, vol. 36(8), pages 2220-2226.
    15. Ma, Tao & Yang, Hongxing & Lu, Lin, 2013. "Performance evaluation of a stand-alone photovoltaic system on an isolated island in Hong Kong," Applied Energy, Elsevier, vol. 112(C), pages 663-672.
    16. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    17. Rohani, Golbarg & Nour, Mutasim, 2014. "Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates," Energy, Elsevier, vol. 64(C), pages 828-841.
    18. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    19. Adeoti, O. & Oyewole, B.A. & Adegboyega, T.D., 2001. "Solar photovoltaic-based home electrification system for rural development in Nigeria: domestic load assessment," Renewable Energy, Elsevier, vol. 24(1), pages 155-161.
    20. El Chaar, L. & lamont, L.A. & El Zein, N., 2011. "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2165-2175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akinyele, D.O., 2017. "Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant," Energy, Elsevier, vol. 130(C), pages 515-529.
    2. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    4. T. Chamarande & S. Mathy & B. Hingray, 2022. "The least cost design of 100% solar power microgrids in Africa: sensitivity to meteorological and economic drivers and possibility for simple pre-sizing rules," Post-Print hal-03740059, HAL.
    5. He, Li & Zhang, Shiyue & Chen, Yizhong & Ren, Lixia & Li, Jing, 2018. "Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 631-641.
    6. Mehra, Varun & Amatya, Reja & Ram, Rajeev J., 2018. "Estimating the value of demand-side management in low-cost, solar micro-grids," Energy, Elsevier, vol. 163(C), pages 74-87.
    7. Wassie, Yibeltal T. & Ahlgren, Erik O., 2023. "Determinants of electricity consumption from decentralized solar PV mini-grids in rural East Africa: An econometric analysis," Energy, Elsevier, vol. 274(C).
    8. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    9. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    10. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    11. Jiménez-Vargas, Iván & Rey, Juan M. & Osma-Pinto, German, 2023. "Sizing of hybrid microgrids considering life cycle assessment," Renewable Energy, Elsevier, vol. 202(C), pages 554-565.
    12. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    13. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    14. Akinyele, D.O. & Rayudu, R.K. & Nair, N.K.C., 2017. "Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria," Renewable Energy, Elsevier, vol. 101(C), pages 537-549.
    15. Bamisile, Olusola & Huang, Qi & Xu, Xiao & Hu, Weihao & Liu, Wen & Liu, Zhou & Chen, Zhe, 2020. "An approach for sustainable energy planning towards 100 % electrification of Nigeria by 2030," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    3. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    4. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    5. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    6. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    7. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    8. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    9. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    10. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    11. Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
    12. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    13. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    15. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    16. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    17. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    18. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    19. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    20. Das, Barun K. & Zaman, Forhad, 2019. "Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection," Energy, Elsevier, vol. 169(C), pages 263-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:160-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.