IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp533-542.html
   My bibliography  Save this article

Thermal behavior of waste tea pyrolysis by TG-FTIR analysis

Author

Listed:
  • Tian, Linghui
  • Shen, Boxiong
  • Xu, Huan
  • Li, Fukuan
  • Wang, Yinyin
  • Singh, Surjit

Abstract

To investigate the kinetic behavior and the release of evolved gases in the pyrolysis process for waste tea, the technique of TG-FTIR at different heating rates was introduced in this study. The mass loss of the waste tea was divided into two steps: the volatilization of water at the temperature lower than 210 °C, and the volatilization of CO2 and organic compounds at the temperature range of 210–550 °C. FTIR (Fourier transform infrared) analysis indicated that CO2was the main gas released from the thermal degradation of waste tea. Moreover, the evolved gases from the waste tea also included H2O, CH3COOH, C6H5OH, CC and so on. Three model-free models and three model-fitting models were applied to investigate the pyrolysis process of waste tea. According to the values of the activation energy by the three model-free models and the correlation coefficient from model-fitting models, the activation energy (207.96 kJ/mol ∼ 222.6 kJ/mol) and pre-exponential factor were determined for the pyrolysis of waste tea. The results of the model-fitting models indicated that three-dimension diffusion (spherical symmetry) model conformed to the pyrolysis mechanism of waste tea well.

Suggested Citation

  • Tian, Linghui & Shen, Boxiong & Xu, Huan & Li, Fukuan & Wang, Yinyin & Singh, Surjit, 2016. "Thermal behavior of waste tea pyrolysis by TG-FTIR analysis," Energy, Elsevier, vol. 103(C), pages 533-542.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:533-542
    DOI: 10.1016/j.energy.2016.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
    2. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Rijo, Bruna & Soares Dias, Ana Paula & Ramos, Marta & de Jesus, Nicole & Puna, Jaime, 2021. "Catalyzed pyrolysis of coffee and tea wastes," Energy, Elsevier, vol. 235(C).
    4. Jiang, Yuan & Zong, Peijie & Tian, Bin & Ming, Xue & Xu, Fanfan & Tian, Yuanyu & Qiao, Yingyun & Li, Dawei & Song, Qingshuo & Yu, Qiankun, 2021. "Pyrolysis of coal group component. Part Ⅰ. Emission characteristics and product distribution of saturate component," Energy, Elsevier, vol. 216(C).
    5. Escalante, Jamin & Chen, Wei-Hsin & Tabatabaei, Meisam & Hoang, Anh Tuan & Kwon, Eilhann E. & Andrew Lin, Kun-Yi & Saravanakumar, Ayyadurai, 2022. "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Chen, Guan-Bang & Wu, Fang-Hsien & Fang, Tzu-Lu & Lin, Hsien-Tsung & Chao, Yei-Chin, 2021. "A study of Co-gasification of sewage sludge and palm kernel shells," Energy, Elsevier, vol. 218(C).
    7. Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
    8. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    9. Fang, Shiwen & Yu, Zhaosheng & Ma, Xiaoqian & Lin, Yan & Chen, Lin & Liao, Yanfen, 2018. "Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)," Energy, Elsevier, vol. 143(C), pages 517-532.
    10. Sergio Suárez & Jose Guillermo Rosas & Marta Elena Sánchez & Roberto López & Natalia Gómez & Jorge Cara-Jiménez, 2019. "Parametrization of a Modified Friedman Kinetic Method to Assess Vine Wood Pyrolysis Using Thermogravimetric Analysis," Energies, MDPI, vol. 12(13), pages 1-14, July.
    11. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).
    12. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    13. Abdullahi Shagali, Abdulmajid & Hu, Song & Li, Hanjian & He, Limo & Han, Hengda & Chi, Huanying & Qing, Haoran & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Xiang, Jun, 2023. "Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system," Renewable Energy, Elsevier, vol. 215(C).
    14. Wang, Bo & Xu, Fanfan & Zong, Peijie & Zhang, Jinhong & Tian, Yuanyu & Qiao, Yingyun, 2019. "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 132(C), pages 486-496.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:533-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.