IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2599-d246211.html
   My bibliography  Save this article

Parametrization of a Modified Friedman Kinetic Method to Assess Vine Wood Pyrolysis Using Thermogravimetric Analysis

Author

Listed:
  • Sergio Suárez

    (Department Area of Chemical Engineering, Institute of Natural Resources, Universidad de León, 24071 León, Spain)

  • Jose Guillermo Rosas

    (Department Area of Chemical Engineering, Institute of Natural Resources, Universidad de León, 24071 León, Spain)

  • Marta Elena Sánchez

    (Department Area of Chemical Engineering, Institute of Natural Resources, Universidad de León, 24071 León, Spain)

  • Roberto López

    (Department Area of Physical Chemistry, Chemical and Physics Department, Universidad de León, 24071 León, Spain)

  • Natalia Gómez

    (Department Area of Chemical Engineering, Institute of Natural Resources, Universidad de León, 24071 León, Spain)

  • Jorge Cara-Jiménez

    (Department Area of Chemical Engineering, Institute of Natural Resources, Universidad de León, 24071 León, Spain)

Abstract

Common kinetic parameters were obtained for leached and non-leached samples of vine wood biomass. Both samples were considered to have different proportions of cellulose, hemicellulose, and lignin compositions as a result of the leaching process. The two samples were analyzed in terms of pyrolysis kinetic parameters using non-isothermal thermogravimetric analysis. Furthermore, the classic Friedman isoconversional method, a deconvolution procedure using the Fraser–Suzuki function, and a modified Friedman method from a previous study on the delay in conversion degree were satisfactorily applied. The observed difference when the deconvolution technique was applied suggests that the classic Friedman method is not adequate for studying the pyrolysis of individual vine wood biomass components. However, this issue was solved by studying the delay in conversion degree of both biomasses and calculating the kinetic parameters using the resulting information. This procedure was found to be useful for studying and comparing the kinetics of heterogeneous biomasses and has a sound scientific explanation, making this research a basis for future similar studies.

Suggested Citation

  • Sergio Suárez & Jose Guillermo Rosas & Marta Elena Sánchez & Roberto López & Natalia Gómez & Jorge Cara-Jiménez, 2019. "Parametrization of a Modified Friedman Kinetic Method to Assess Vine Wood Pyrolysis Using Thermogravimetric Analysis," Energies, MDPI, vol. 12(13), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2599-:d:246211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konstantinos G. Kalogiannis & Leonidas Matsakas & Angelos A. Lappas & Ulrika Rova & Paul Christakopoulos, 2019. "Aromatics from Beechwood Organosolv Lignin through Thermal and Catalytic Pyrolysis," Energies, MDPI, vol. 12(9), pages 1-11, April.
    2. Moine, Ely cheikh & Groune, Khalihena & El Hamidi, Adnane & Khachani, Mariam & Halim, Mohammed & Arsalane, Said, 2016. "Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale," Energy, Elsevier, vol. 115(P1), pages 931-941.
    3. Rentizelas, Athanasios A. & Li, Jun, 2016. "Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing," Energy, Elsevier, vol. 114(C), pages 129-142.
    4. Eunhye Song & Daegi Kim & Cheol-Jin Jeong & Do-Yong Kim, 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis," Energies, MDPI, vol. 12(5), pages 1-10, March.
    5. Liu, Sheng & Yu, Jie & Bikane, Kagiso & Chen, Tao & Ma, Chuan & Wang, Ben & Sun, Lushi, 2018. "Rubber pyrolysis: Kinetic modeling and vulcanization effects," Energy, Elsevier, vol. 155(C), pages 215-225.
    6. Tian, Linghui & Shen, Boxiong & Xu, Huan & Li, Fukuan & Wang, Yinyin & Singh, Surjit, 2016. "Thermal behavior of waste tea pyrolysis by TG-FTIR analysis," Energy, Elsevier, vol. 103(C), pages 533-542.
    7. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    8. Cai, Junmeng & Wu, Weixuan & Liu, Ronghou, 2014. "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 236-246.
    9. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
    10. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    3. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.
    4. Mumbach, Guilherme Davi & Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Domenico, Michele Di & Arias, Santiago & Pacheco, Jose Geraldo A. & Marangoni, Cintia & Machado, Ricardo Anton, 2022. "Prospecting pecan nutshell pyrolysis as a source of bioenergy and bio-based chemicals using multicomponent kinetic modeling, thermodynamic parameters estimation, and Py-GC/MS analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Alves, José Luiz Francisco & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & de Sena, Rennio Felix & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2022. "Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters," Renewable Energy, Elsevier, vol. 181(C), pages 207-218.
    6. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    7. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    9. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    10. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    11. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    12. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    13. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    14. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    15. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    17. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    18. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    19. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    20. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2599-:d:246211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.