IDEAS home Printed from
   My bibliography  Save this article

Lower electricity prices and greenhouse gas emissions due to rooftop solar: empirical results for Massachusetts


  • Kaufmann, Robert K.
  • Vaid, Devina


Monthly and hourly correlations among photovoltaic (PV) capacity utilization, electricity prices, electricity consumption, and the thermal efficiency of power plants in Massachusetts reduce electricity prices and carbon emissions beyond average calculations. PV utilization rates are highest when the thermal efficiencies of natural gas fired power plants are lowest, which reduces emissions of CO2 and CH4 by 0.3% relative to the annual average emission rate. There is a positive correlation between PV utilization rates and electricity prices, which raises the implied price of PV electricity by up to 10% relative to the annual average price, such that the average MWh reduces electricity prices by $0.26–$1.86 per MWh. These price reductions save Massachusetts rate-payers $184 million between 2010 and 2012. The current and net present values of these savings are greater than the cost of solar renewable energy credits which is the policy instrument that is used to accelerate the installation of PV capacity. Together, these results suggest that rooftop PV is an economically viable source of power in Massachusetts even though it has not reached socket parity.

Suggested Citation

  • Kaufmann, Robert K. & Vaid, Devina, 2016. "Lower electricity prices and greenhouse gas emissions due to rooftop solar: empirical results for Massachusetts," Energy Policy, Elsevier, vol. 93(C), pages 345-352.
  • Handle: RePEc:eee:enepol:v:93:y:2016:i:c:p:345-352
    DOI: 10.1016/j.enpol.2016.03.006

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    2. Chesser, Michael & Hanly, Jim & Cassells, Damien & Apergis, Nicholas, 2018. "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, Elsevier, vol. 122(C), pages 36-44.
    3. Mosquera-López, Stephanía & Nursimulu, Anjali, 2019. "Drivers of electricity price dynamics: Comparative analysis of spot and futures markets," Energy Policy, Elsevier, vol. 126(C), pages 76-87.
    4. Mosquera-López, Stephanía & Uribe, Jorge M. & Manotas-Duque, Diego Fernando, 2017. "Nonlinear empirical pricing in electricity markets using fundamental weather factors," Energy, Elsevier, vol. 139(C), pages 594-605.
    5. Véliz, Karina D. & Kaufmann, Robert K. & Cleveland, Cutler J. & Stoner, Anne M.K., 2017. "The effect of climate change on electricity expenditures in Massachusetts," Energy Policy, Elsevier, vol. 106(C), pages 1-11.
    6. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    7. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2020. "Impact of Solar and Wind Prices on the Integrated Global Electricity Spot and Options Markets: A Time Series Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 337-353.
    8. Haitao Xiang & Ying Kong & Wai Kin Victor Chan & Sum Wai Chiang, 2019. "Impact of Price–Quantity Uncertainties and Risk Aversion on Energy Retailer’s Pricing and Hedging Behaviors," Energies, MDPI, Open Access Journal, vol. 12(17), pages 1-20, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:93:y:2016:i:c:p:345-352. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.