IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v50y2012icp228-241.html
   My bibliography  Save this article

An empirical analysis of the hydropower portfolio in Pakistan

Author

Listed:
  • Siddiqi, Afreen
  • Wescoat, James L.
  • Humair, Salal
  • Afridi, Khurram

Abstract

The Indus Basin of Pakistan with 800 hydropower project sites and a feasible hydropower potential of 60GW, 89% of which is undeveloped, is a complex system poised for large-scale changes in the future. Motivated by the need to understand future impacts of hydropower alternatives, this study conducted a multi-dimensional, empirical analysis of the full hydropower portfolio. The results show that the full portfolio spans multiple scales of capacity from mega (>1000MW) to micro (<0.1MW) projects with a skewed spatial distribution within the provinces, as well as among rivers and canals. Of the total feasible potential, 76% lies in two (out of six) administrative regions and 68% lies in two major rivers (out of more than 125 total channels). Once projects currently under implementation are commissioned, there would be a five-fold increase from a current installed capacity of 6720MW to 36759MW. It is recommended that the implementation and design decisions should carefully include spatial distribution and environmental considerations upfront. Furthermore, uncertainties in actual energy generation, and broader hydrological risks due to expected climate change effects should be included in the current planning of these systems that are to provide service over several decades into the future.

Suggested Citation

  • Siddiqi, Afreen & Wescoat, James L. & Humair, Salal & Afridi, Khurram, 2012. "An empirical analysis of the hydropower portfolio in Pakistan," Energy Policy, Elsevier, vol. 50(C), pages 228-241.
  • Handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:228-241
    DOI: 10.1016/j.enpol.2012.06.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512005733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.06.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank, 2010. "Afghanistan - Scoping Strategic Options for Development of the Kabul River Basin : A Multisectoral Decision Support System Approach," World Bank Publications - Reports 18422, The World Bank Group.
    2. Bartle, Alison, 2002. "Hydropower potential and development activities," Energy Policy, Elsevier, vol. 30(14), pages 1231-1239, November.
    3. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    4. Klimpt, Jean-Etienne & Rivero, Cristina & Puranen, Hannu & Koch, Frans, 2002. "Recommendations for sustainable hydroelectric development," Energy Policy, Elsevier, vol. 30(14), pages 1305-1312, November.
    5. Muneer, T. & Asif, M., 2007. "Prospects for secure and sustainable electricity supply for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 654-671, May.
    6. Egre, Dominique & Milewski, Joseph C., 2002. "The diversity of hydropower projects," Energy Policy, Elsevier, vol. 30(14), pages 1225-1230, November.
    7. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    2. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2015. "The diagnosis of an electricity crisis and alternative energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1172-1185.
    3. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    4. Mohd Alsaleh & Muhammad Mansur Abdulwakil & Abdul Samad Abdul-Rahim, 2021. "Land-Use Change Impacts from Sustainable Hydropower Production in EU28 Region: An Empirical Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    5. Jamil, Rehan, 2020. "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030," Renewable Energy, Elsevier, vol. 154(C), pages 1-10.
    6. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    7. Dhaubanjar, Sanita & Lutz, Arthur F & Pradhananga, Saurav & Smolenaars, Wouter & Khanal, Sonu & Biemans, Hester & Nepal, Santosh & Ludwig, Fulco & Shrestha, Arun Bhakta & Immerzeel, Walter W, 2024. "From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin," Applied Energy, Elsevier, vol. 357(C).
    8. Kwon Gi Mun & Yao Zhao & Raza Ali Rafique, 2021. "Designing Hydro Supply Chains for Energy, Food, and Flood," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 274-293, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    2. Sharma, Naveen Kumar & Tiwari, Prashant Kumar & Sood, Yog Raj, 2013. "A comprehensive analysis of strategies, policies and development of hydropower in India: Special emphasis on small hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 460-470.
    3. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    4. Asher, Manshi & Bhandari, Prakash, 2021. "Mitigation or Myth? Impacts of Hydropower Development and Compensatory Afforestation on forest ecosystems in the high Himalayas," Land Use Policy, Elsevier, vol. 100(C).
    5. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    6. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    7. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    8. Kumar, Deepak & Katoch, S.S., 2014. "Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 101-108.
    9. Melikoglu, Mehmet, 2013. "Hydropower in Turkey: Analysis in the view of Vision 2023," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 503-510.
    10. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    11. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    12. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    13. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    14. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    15. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    16. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    17. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    18. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    19. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    20. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:50:y:2012:i:c:p:228-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.