IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i5p2808-2816.html
   My bibliography  Save this article

Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration

Author

Listed:
  • Mantripragada, Hari Chandan
  • Rubin, Edward S.

Abstract

Coal-to-liquids (CTL) processes that generate synthetic liquid fuels from coal are of increasing interest in light of the substantial rise in world oil prices in recent years. A major concern, however, is the large emissions of CO2 from the process, which would add to the burden of atmospheric greenhouse gases. To assess the options, impacts and costs of controlling CO2 emissions from a CTL plant, a comprehensive techno-economic assessment model of CTL plants has been developed, capable of incorporating technology options for carbon capture and storage (CCS). The model was used to study the performance and cost of a liquids-only plant as well as a co-production plant, which produces both liquids and electricity. The effect of uncertainty and variability of key parameters on the cost of liquids production was quantified, as were the effects of alternative carbon constraints such as choice of CCS technology and the effective price (or tax) on CO2 emissions imposed by a climate regulatory policy. The efficiency and CO2 emissions from a co-production plant also were compared to the separate production of liquid fuels and electricity. The results for a 50,000 barrels/day case study plant are presented.

Suggested Citation

  • Mantripragada, Hari Chandan & Rubin, Edward S., 2011. "Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration," Energy Policy, Elsevier, vol. 39(5), pages 2808-2816, May.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2808-2816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(11)00145-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    2. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    3. Guzel Mingaleeva & Olga Afanaseva & Duc Toan Nguen & Dang Nayt Pham & Pietro Zunino, 2020. "The Integration of Hybrid Mini Thermal Power Plants into the Energy Complex of the Republic of Vietnam," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Henry Chen, Y.-H. & Reilly, John M. & Paltsev, Sergey, 2011. "The prospects for coal-to-liquid conversion: A general equilibrium analysis," Energy Policy, Elsevier, vol. 39(9), pages 4713-4725, September.
    5. Guo, Meiyu & Xu, Yuan, 2018. "Coal-to-liquids projects in China under water and carbon constraints," Energy Policy, Elsevier, vol. 117(C), pages 58-65.
    6. De Simio, L. & Gambino, M. & Iannaccone, S., 2013. "Possible transport energy sources for the future," Transport Policy, Elsevier, vol. 27(C), pages 1-10.
    7. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    8. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    9. Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    10. Mohajerani, Sara & Kumar, Amit & Oni, Abayomi Olufemi, 2018. "A techno-economic assessment of gas-to-liquid and coal-to-liquid plants through the development of scale factors," Energy, Elsevier, vol. 150(C), pages 681-693.
    11. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    12. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
    13. Kong, Zhaoyang & Dong, Xiucheng & Jiang, Qingzhe, 2019. "Forecasting the development of China's coal-to-liquid industry under security, economic and environmental constraints," Energy Economics, Elsevier, vol. 80(C), pages 253-266.
    14. Sangeeta, & Moka, Sudheshna & Pande, Maneesha & Rani, Monika & Gakhar, Ruchi & Sharma, Madhur & Rani, Jyoti & Bhaskarwar, Ashok N., 2014. "Alternative fuels: An overview of current trends and scope for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 697-712.
    15. Haarlemmer, Geert & Boissonnet, Guillaume & Peduzzi, Emanuela & Setier, Pierre-Alexandre, 2014. "Investment and production costs of synthetic fuels – A literature survey," Energy, Elsevier, vol. 66(C), pages 667-676.
    16. Höök, Mikael & Fantazzini, Dean & Angelantoni, André & Snowden, Simon, 2013. "Hydrocarbon liquefaction: viability as a peak oil mitigation strategy," MPRA Paper 46957, University Library of Munich, Germany.
    17. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:5:p:2808-2816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.