IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v79y2019icp32-44.html
   My bibliography  Save this article

Measuring the environmental performance of green SRI funds: A DEA approach

Author

Listed:
  • Allevi, E.
  • Basso, A.
  • Bonenti, F.
  • Oggioni, G.
  • Riccardi, R.

Abstract

In this paper, we tackle the issue of evaluating an important class of green investing that integrate classical financial tasks with some environmental issues: the so-called green mutual funds.

Suggested Citation

  • Allevi, E. & Basso, A. & Bonenti, F. & Oggioni, G. & Riccardi, R., 2019. "Measuring the environmental performance of green SRI funds: A DEA approach," Energy Economics, Elsevier, vol. 79(C), pages 32-44.
  • Handle: RePEc:eee:eneeco:v:79:y:2019:i:c:p:32-44
    DOI: 10.1016/j.eneco.2018.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318302731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Basso, Antonella & Funari, Stefania, 2001. "A data envelopment analysis approach to measure the mutual fund performance," European Journal of Operational Research, Elsevier, vol. 135(3), pages 477-492, December.
    3. Y Ito & S Managi & A Matsuda, 2013. "Performances of socially responsible investment and environmentally friendly funds," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(11), pages 1583-1594, November.
    4. Rajiv D. Banker & Ram Natarajan, 2011. "Statistical Tests Based on DEA Efficiency Scores," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 273-295, Springer.
    5. Banker, Rajiv D. & Zheng, Zhiqiang (Eric) & Natarajan, Ram, 2010. "DEA-based hypothesis tests for comparing two groups of decision making units," European Journal of Operational Research, Elsevier, vol. 206(1), pages 231-238, October.
    6. Basso, Antonella & Funari, Stefania, 2014. "Constant and variable returns to scale DEA models for socially responsible investment funds," European Journal of Operational Research, Elsevier, vol. 235(3), pages 775-783.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    10. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    11. Romano, Giulia & Guerrini, Andrea, 2014. "The effects of ownership, board size and board composition on the performance of Italian water utilities," Utilities Policy, Elsevier, vol. 31(C), pages 18-28.
    12. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1979. "Measuring the efficiency of decision-making units," European Journal of Operational Research, Elsevier, vol. 3(4), pages 339-338, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    2. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    3. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    4. Antonella Basso & Stefania Funari, 2017. "The role of fund size in the performance of mutual funds assessed with DEA models," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 457-473, May.
    5. M. Lábaj & M. Luptáčik & E. Nežinský, 2014. "Data envelopment analysis for measuring economic growth in terms of welfare beyond GDP," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 407-424, August.
    6. Amirteimoori, Alireza & Cezar, Asunur & Zadmirzaei, Majid & Susaeta, Andres, 2024. "Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    7. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    8. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    9. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    10. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    11. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    12. Nishtha Gupta & Jolly Puri & Gautam Setia, 2025. "Profit efficiency estimation and prediction of banks with mixed structure: a unified DDF-based network DEA and ML approach," Operational Research, Springer, vol. 25(3), pages 1-39, September.
    13. Kao, Chiang, 2020. "Measuring efficiency in a general production possibility set allowing for negative data," European Journal of Operational Research, Elsevier, vol. 282(3), pages 980-988.
    14. Guillen, Maria D. & Aparicio, Juan & Kapelko, Magdalena & Esteve, Miriam, 2025. "Measuring environmental inefficiency through machine learning: An approach based on efficiency analysis trees and by-production technology," European Journal of Operational Research, Elsevier, vol. 321(2), pages 529-542.
    15. Simona Cohen-Kadosh & Zilla Sinuany-Stern, 2020. "Hip fracture surgery efficiency in Israeli hospitals via a network data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 251-277, March.
    16. Puertas, Rosa & Guaita-Martinez, José M. & Carracedo, Patricia & Ribeiro-Soriano, Domingo, 2022. "Analysis of European environmental policies: Improving decision making through eco-efficiency," Technology in Society, Elsevier, vol. 70(C).
    17. Aziz KUTLAR & Ali KABASAKAL & Adem BABACAN, 2015. "Dynamic Efficiency of Turkish Banks: a DEA Window and Malmquist Index Analysis for the Period of 2003-2012," Sosyoekonomi Journal, Sosyoekonomi Society, issue 23(24).
    18. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    20. Fei Mo & Derek Wang, 2019. "Environmental Sustainability of Road Transport in OECD Countries," Energies, MDPI, vol. 12(18), pages 1-14, September.

    More about this item

    Keywords

    Data envelopment analysis; Energy finance; Green mutual funds; Mutual fund performance evaluation;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:79:y:2019:i:c:p:32-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.