IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v324y2025i3p925-940.html
   My bibliography  Save this article

Streamlining emergency response: A K-adaptable model and a column-and-constraint-generation algorithm

Author

Listed:
  • Weller, Paula
  • Oliveira, Fabricio

Abstract

Emergency response refers to the systematic response to an unexpected, disruptive occurrence such as a natural disaster. The response aims to mitigate the consequences of the occurrence by providing the affected region with the necessary supplies. A critical factor for a successful response is its timely execution, but the unpredictable nature of disasters often prevents quick reactionary measures. Preallocating the supplies before the disaster takes place allows for a faster response, but requires more overall resources because the time and place of the disaster are not yet known. This gives rise to a trade-off between how quickly a response plan is executed and how precisely it targets the affected areas. Aiming to capture the dynamics of this trade-off, we develop a K-adjustable robust model, which allows a maximum of K second-stage decisions, i.e., response plans. This mitigates tractability issues and allows the decision-maker to seamlessly navigate the gap between the readiness of a proactive yet rigid response and the accuracy of a reactive yet highly adjustable one. The approaches we consider to solve the K-adaptable model are twofold: Via a branch-and-bound method as well as a static robust reformulation in combination with a column-and-constraint generation algorithm. In a computational study, we compare and contrast the different solution approaches and assess their potential.

Suggested Citation

  • Weller, Paula & Oliveira, Fabricio, 2025. "Streamlining emergency response: A K-adaptable model and a column-and-constraint-generation algorithm," European Journal of Operational Research, Elsevier, vol. 324(3), pages 925-940.
  • Handle: RePEc:eee:ejores:v:324:y:2025:i:3:p:925-940
    DOI: 10.1016/j.ejor.2025.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725001365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alem, Douglas & Bonilla-Londono, Hector F. & Barbosa-Povoa, Ana Paula & Relvas, Susana & Ferreira, Deisemara & Moreno, Alfredo, 2021. "Building disaster preparedness and response capacity in humanitarian supply chains using the Social Vulnerability Index," European Journal of Operational Research, Elsevier, vol. 292(1), pages 250-275.
    2. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    3. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    4. Krzysztof Postek & Dick den Hertog, 2016. "Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 553-574, August.
    5. Li, Yuchen & Liu, Yang, 2023. "Distributionally robust optimization for collaborative emergency response network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Tippong, Danuphon & Petrovic, Sanja & Akbari, Vahid, 2022. "A review of applications of operational research in healthcare coordination in disaster management," European Journal of Operational Research, Elsevier, vol. 301(1), pages 1-17.
    8. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    9. Serhan Duran & Marco A. Gutierrez & Pinar Keskinocak, 2011. "Pre-Positioning of Emergency Items for CARE International," Interfaces, INFORMS, vol. 41(3), pages 223-237, June.
    10. Buchheim, Christoph & Pruente, Jonas, 2019. "K-adaptability in stochastic combinatorial optimization under objective uncertainty," European Journal of Operational Research, Elsevier, vol. 277(3), pages 953-963.
    11. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    12. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    13. Dimitris Bertsimas & Iain Dunning, 2016. "Multistage Robust Mixed-Integer Optimization with Adaptive Partitions," Operations Research, INFORMS, vol. 64(4), pages 980-998, August.
    14. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    15. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    16. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    17. Farzad Avishan & Milad Elyasi & İhsan Yanıkoğlu & Ali Ekici & O. Örsan Özener, 2023. "Humanitarian Relief Distribution Problem: An Adjustable Robust Optimization Approach," Transportation Science, INFORMS, vol. 57(4), pages 1096-1114, July.
    18. Chassein, André & Goerigk, Marc & Kurtz, Jannis & Poss, Michael, 2019. "Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 308-319.
    19. Ayşe N. Arslan & Michael Poss & Marco Silva, 2022. "Min-Sup-Min Robust Combinatorial Optimization with Few Recourse Solutions," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2212-2228, July.
    20. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borumand, Ali & Marandi, Ahmadreza & Nookabadi, Ali S. & Atan, Zümbül, 2024. "An oracle-based algorithm for robust planning of production routing problems in closed-loop supply chains of beverage glass bottles," Omega, Elsevier, vol. 122(C).
    2. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    3. Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
    4. Jiu, Song, 2022. "Robust omnichannel retail operations with the implementation of ship-from-store," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Yang, Wenjie & Caunhye, Aakil M. & Zhuo, Maolin & Wang, Qingyi, 2024. "Integrated planning of emergency supply pre-positioning and victim evacuation," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    6. Siddig, Murwan & Song, Yongjia, 2025. "Multistage stochastic programming with a random number of stages: Applications in hurricane disaster relief logistics planning," European Journal of Operational Research, Elsevier, vol. 321(3), pages 925-941.
    7. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    8. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    9. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    10. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    11. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    12. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    13. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    14. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    15. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    16. Lee, Junhyeok & Moon, Ilkyeong, 2024. "A decomposition approach for robust omnichannel retail operations considering the third-party platform channel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    17. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    18. Wang, Duo & Yang, Kai & Yuen, Kum Fai & Yang, Lixing & Dong, Jianjun, 2024. "Hybrid risk-averse location-inventory-allocation with secondary disaster considerations in disaster relief logistics: A distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    20. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:324:y:2025:i:3:p:925-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.