IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i2p427-447.html
   My bibliography  Save this article

A new branch-and-cut approach for integrated planning in additive manufacturing

Author

Listed:
  • Zipfel, Benedikt
  • Tamke, Felix
  • Kuttner, Leopold

Abstract

In recent years, there has been considerable interest in the transformative potential of additive manufacturing (AM) since it allows for producing highly customizable and complex components while reducing lead times and costs. The rise of AM for traditional and new business models enforces the need for efficient planning procedures for AM facilities. In this area, the assignment and sequencing of components to be built by an AM machine, also called a 3D printer, is a complex challenge combining two combinatorial problems: The first decision involves the grouping of parts into production batches, akin to the well-known bin packing problem. Subsequently, the second problem pertains to the scheduling of these batches onto the available machines, which corresponds to a parallel machine scheduling problem. For minimizing makespan, this paper proposes a new branch-and-cut algorithm for integrated planning for unrelated parallel machines. The algorithm is based on combinatorial Benders decomposition: The scheduling problem is considered in the master problem, while the feasibility of an obtained solution with respect to the packing problem is checked in the sub-problem. Current state-of-the-art techniques are extended to solve the orthogonal packing with rotation and used to speed up the solution of the sub-problem. Extensive computational tests on existing and new benchmark instances show the algorithm’s superior performance, improving the makespan by 18.7% on average, with improvements reaching up to 97.6% for large problems compared to an existing integrated mixed-integer programming model.

Suggested Citation

  • Zipfel, Benedikt & Tamke, Felix & Kuttner, Leopold, 2025. "A new branch-and-cut approach for integrated planning in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 322(2), pages 427-447.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:427-447
    DOI: 10.1016/j.ejor.2024.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    2. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.
    3. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    4. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    5. Mao, Zhaofang & Fu, Enyuan & Huang, Dian & Fang, Kan & Chen, Lin, 2024. "Combinatorial Benders decomposition for single machine scheduling in additive manufacturing with two-dimensional packing constraints," European Journal of Operational Research, Elsevier, vol. 317(3), pages 890-905.
    6. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    7. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).
    8. Clautiaux, Francois & Carlier, Jacques & Moukrim, Aziz, 2007. "A new exact method for the two-dimensional orthogonal packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1196-1211, December.
    9. Zipfel, Benedikt & M’Hallah, Rym & Buscher, Udo, 2024. "Scheduling for additive manufacturing with two-dimensional packing and incompatible items," Omega, Elsevier, vol. 129(C).
    10. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    11. Polyakovskiy, Sergey & M’Hallah, Rym, 2018. "A hybrid feasibility constraints-guided search to the two-dimensional bin packing problem with due dates," European Journal of Operational Research, Elsevier, vol. 266(3), pages 819-839.
    12. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    13. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    14. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    15. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    16. Vanessa M. R. Bezerra & Aline A. S. Leao & José Fernando Oliveira & Maristela O. Santos, 2020. "Models for the two-dimensional level strip packing problem – a review and a computational evaluation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(4), pages 606-627, April.
    17. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    18. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    19. Gardeyn, Jeroen & Wauters, Tony, 2022. "A goal-driven ruin and recreate heuristic for the 2D variable-sized bin packing problem with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 301(2), pages 432-444.
    20. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2013. "A goal-driven approach to the 2D bin packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 224(1), pages 110-121.
    21. Sándor P. Fekete & Jörg Schepers, 2004. "A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 311-329, October.
    22. Jianming Zhang & Xifan Yao & Yun Li, 2020. "Improved evolutionary algorithm for parallel batch processing machine scheduling in additive manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(8), pages 2263-2282, April.
    23. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    24. Arbib, Claudio & Marinelli, Fabrizio & Pizzuti, Andrea, 2021. "Number of bins and maximum lateness minimization in two-dimensional bin packing," European Journal of Operational Research, Elsevier, vol. 291(1), pages 101-113.
    25. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    26. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    27. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    28. Attaran, Mohsen, 2017. "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing," Business Horizons, Elsevier, vol. 60(5), pages 677-688.
    29. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    3. Zipfel, Benedikt & M’Hallah, Rym & Buscher, Udo, 2024. "Scheduling for additive manufacturing with two-dimensional packing and incompatible items," Omega, Elsevier, vol. 129(C).
    4. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    5. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    6. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2014. "An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints," Operations Research, INFORMS, vol. 62(5), pages 1126-1141, October.
    7. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    8. Gleb Belov & Heide Rohling, 2013. "LP Bounds in an Interval-Graph Algorithm for Orthogonal-Packing Feasibility," Operations Research, INFORMS, vol. 61(2), pages 483-497, April.
    9. Mao, Zhaofang & Fu, Enyuan & Huang, Dian & Fang, Kan & Chen, Lin, 2024. "Combinatorial Benders decomposition for single machine scheduling in additive manufacturing with two-dimensional packing constraints," European Journal of Operational Research, Elsevier, vol. 317(3), pages 890-905.
    10. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    11. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    12. Stéphane Grandcolas & Cyril Pain-Barre, 2022. "A hybrid metaheuristic for the two-dimensional strip packing problem," Annals of Operations Research, Springer, vol. 309(1), pages 79-102, February.
    13. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2020. "The Vehicle Routing Problem with Stochastic Two-Dimensional Items," Transportation Science, INFORMS, vol. 54(2), pages 453-469, March.
    14. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2022. "A cutting plane method and a parallel algorithm for packing rectangles in a circular container," European Journal of Operational Research, Elsevier, vol. 303(1), pages 114-128.
    15. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    16. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    17. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    18. Hong, Shaohui & Zhang, Defu & Lau, Hoong Chuin & Zeng, XiangXiang & Si, Yain-Whar, 2014. "A hybrid heuristic algorithm for the 2D variable-sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 95-103.
    19. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    20. Polyakovskiy, Sergey & M’Hallah, Rym, 2021. "Just-in-time two-dimensional bin packing," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:427-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.