IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i6p1774-1791.html
   My bibliography  Save this article

An Exact Algorithm for the Two-Dimensional Strip-Packing Problem

Author

Listed:
  • Marco Antonio Boschetti

    (Department of Mathematics, University of Bologna, 47023 Cesena, Italy)

  • Lorenza Montaletti

    (Department of Mathematics, University of Bologna, 47023 Cesena, Italy)

Abstract

This paper considers the two-dimensional strip-packing problem (2SP) in which a set of rectangular items have to be orthogonally packed, without overlapping, into a strip of a given width and infinite height by minimizing the overall height of the packing. The 2SP is NP-hard in the strong sense and finds many practical applications. We propose reduction procedures, lower and upper bounds, and an exact algorithm for the 2SP. The new lower bounds are both combinatorial bounds and bounds derived from different relaxations of mathematical formulations of the 2SP. The new upper bounds are obtained by constructive heuristics based on different strategies to place the items into the strip. The new exact method is based on a branch-and-bound approach. Computational results on different sets of test problems derived from the literature show the effectiveness of the new lower and upper bounds and of the new exact algorithm.

Suggested Citation

  • Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:6:p:1774-1791
    DOI: 10.1287/opre.1100.0833
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0833
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    4. Edmund K. Burke & Graham Kendall & Glenn Whitwell, 2009. "A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 505-516, August.
    5. Gleb Belov & Guntram Scheithauer, 2007. "Setup and Open-Stacks Minimization in One-Dimensional Stock Cutting," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 27-35, February.
    6. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    7. Ramón Alvarez-Valdes & Rafael Martí & Jose M. Tamarit & Antonio Parajón, 2007. "GRASP and Path Relinking for the Two-Dimensional Two-Stage Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 261-272, May.
    8. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    9. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    10. A Gómez & D de la Fuente, 2000. "Resolution of strip-packing problems with genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1289-1295, November.
    11. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    12. Hopper, E. & Turton, B. C. H., 2001. "An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 34-57, January.
    13. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    14. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    15. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    16. Liu, Dequan & Teng, Hongfei, 1999. "An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles," European Journal of Operational Research, Elsevier, vol. 112(2), pages 413-420, January.
    17. E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    2. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    3. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    4. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    5. Gleb Belov & Heide Rohling, 2013. "LP Bounds in an Interval-Graph Algorithm for Orthogonal-Packing Feasibility," Operations Research, INFORMS, vol. 61(2), pages 483-497, April.
    6. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    7. Jéssica Gabriela Almeida Cunha & Vinícius Loti de Lima & Thiago Alves Queiroz, 2020. "Grids for cutting and packing problems: a study in the 2D knapsack problem," 4OR, Springer, vol. 18(3), pages 293-339, September.
    8. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    9. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2020. "The Vehicle Routing Problem with Stochastic Two-Dimensional Items," Transportation Science, INFORMS, vol. 54(2), pages 453-469, March.
    10. Stéphane Grandcolas & Cyril Pain-Barre, 2022. "A hybrid metaheuristic for the two-dimensional strip packing problem," Annals of Operations Research, Springer, vol. 309(1), pages 79-102, February.
    11. Zhang, Xiangyi & Chen, Lu & Gendreau, Michel & Langevin, André, 2022. "A branch-and-cut algorithm for the vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 259-269.
    12. de Queiroz, Thiago A. & Miyazawa, Flávio K., 2013. "Two-dimensional strip packing problem with load balancing, load bearing and multi-drop constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 511-530.
    13. Kaiyuan Liu & Hongyu Zhang & Chong Wang & Hui Li & Yongquan Chen & Qiong Chen, 2023. "Robust Optimization for the Two-Dimensional Strip-Packing Problem with Variable-Sized Bins," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
    14. Kartak, Vadim M. & Ripatti, Artem V., 2018. "The minimum raster set problem and its application to the d-dimensional orthogonal packing problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 33-39.
    15. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2014. "An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints," Operations Research, INFORMS, vol. 62(5), pages 1126-1141, October.
    16. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    17. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    2. Rosephine G. Rakotonirainy & Jan H. Vuuren, 2021. "The effect of benchmark data characteristics during empirical strip packing heuristic performance evaluation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 467-495, June.
    3. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    4. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    5. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    6. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    7. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    8. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    9. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    10. Defu Zhang & Yuxin Che & Furong Ye & Yain-Whar Si & Stephen C. H. Leung, 2016. "A hybrid algorithm based on variable neighbourhood for the strip packing problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 513-530, August.
    11. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    12. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    13. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    14. Defu Zhang & Lijun Wei & Stephen C. H. Leung & Qingshan Chen, 2013. "A Binary Search Heuristic Algorithm Based on Randomized Local Search for the Rectangular Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 332-345, May.
    15. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    16. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    17. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    18. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    19. Wei, Lijun & Tian, Tian & Zhu, Wenbin & Lim, Andrew, 2014. "A block-based layer building approach for the 2D guillotine strip packing problem," European Journal of Operational Research, Elsevier, vol. 239(1), pages 58-69.
    20. Lei Wang & Aihua Yin, 2016. "A quasi-human algorithm for the two dimensional rectangular strip packing problem: in memory of Prof. Wenqi Huang," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 416-444, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:6:p:1774-1791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.