IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i4p655-671.html
   My bibliography  Save this article

A New Placement Heuristic for the Orthogonal Stock-Cutting Problem

Author

Listed:
  • E. K. Burke

    (School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, United Kingdom)

  • G. Kendall

    (School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, United Kingdom)

  • G. Whitwell

    (School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, United Kingdom)

Abstract

This paper presents a new best-fit heuristic for the two-dimensional rectangular stock-cutting problem and demonstrates its effectiveness by comparing it against other published approaches. A placement algorithm usually takes a list of shapes, sorted by some property such as increasing height or decreasing area, and then applies a placement rule to each of these shapes in turn. The proposed method is not restricted to the first shape encountered but may dynamically search the list for better candidate shapes for placement. We suggest an efficient implementation of our heuristic and show that it compares favourably to other heuristic and metaheuristic approaches from the literature in terms of both solution quality and execution time. We also present data for new problem instances to encourage further research and greater comparison between this and future methods.

Suggested Citation

  • E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:4:p:655-671
    DOI: 10.1287/opre.1040.0109
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0109
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    3. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    4. Dowsland, Kathryn A. & Dowsland, William B., 1995. "Solution approaches to irregular nesting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 506-521, August.
    5. Hopper, E. & Turton, B. C. H., 2001. "An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 34-57, January.
    6. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    7. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    8. Faina, Loris, 1999. "An application of simulated annealing to the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 542-556, May.
    9. Li, Zhenyu & Milenkovic, Victor, 1995. "Compaction and separation algorithms for non-convex polygons and their applications," European Journal of Operational Research, Elsevier, vol. 84(3), pages 539-561, August.
    10. Liu, Dequan & Teng, Hongfei, 1999. "An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles," European Journal of Operational Research, Elsevier, vol. 112(2), pages 413-420, January.
    11. Kroger, Berthold, 1995. "Guillotineable bin packing: A genetic approach," European Journal of Operational Research, Elsevier, vol. 84(3), pages 645-661, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    2. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    3. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    4. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    5. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    6. Edmund K. Burke & Graham Kendall & Glenn Whitwell, 2009. "A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 505-516, August.
    7. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    8. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    9. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    10. Rosephine G. Rakotonirainy & Jan H. Vuuren, 2021. "The effect of benchmark data characteristics during empirical strip packing heuristic performance evaluation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 467-495, June.
    11. Edmund Burke & Robert Hellier & Graham Kendall & Glenn Whitwell, 2006. "A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem," Operations Research, INFORMS, vol. 54(3), pages 587-601, June.
    12. Lu, Hao-Chun & Huang, Yao-Huei, 2015. "An efficient genetic algorithm with a corner space algorithm for a cutting stock problem in the TFT-LCD industry," European Journal of Operational Research, Elsevier, vol. 246(1), pages 51-65.
    13. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    14. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    15. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    16. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    17. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    18. Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
    19. Alvarez-Valdes, R. & Parreno, F. & Tamarit, J.M., 2007. "A tabu search algorithm for a two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1167-1182, December.
    20. H. Terashima-Marín & P. Ross & C. Farías-Zárate & E. López-Camacho & M. Valenzuela-Rendón, 2010. "Generalized hyper-heuristics for solving 2D Regular and Irregular Packing Problems," Annals of Operations Research, Springer, vol. 179(1), pages 369-392, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:4:p:655-671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.