IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i1p203-220.html
   My bibliography  Save this article

Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories

Author

Listed:
  • Charles, Mehdi
  • Dauzère-Pérès, Stéphane
  • Kedad-Sidhoum, Safia
  • Mazhoud, Issam

Abstract

This paper first analyzes the negative impact of the end-of-horizon effect when solving the capacitated multi-item lot-sizing problem with setup costs and times on a rolling horizon. Maximum ending inventories for items and a global minimum ending inventory are considered to define a new optimization problem whose optimal solutions are much less impacted by the end-of-horizon effect. Then, a generation scheme is proposed to create new instances with initial inventories and ending inventories. This scheme relies on the analysis of the cyclical production planning problem to derive relevant parameters. Computational experiments are carried out to compare the solutions obtained for original instances of the literature and for the new instances, and to analyze the relevance of the new instances on a rolling horizon.

Suggested Citation

  • Charles, Mehdi & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Mazhoud, Issam, 2022. "Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories," European Journal of Operational Research, Elsevier, vol. 302(1), pages 203-220.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:203-220
    DOI: 10.1016/j.ejor.2021.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, vol. 35(3), pages 353-366, March.
    2. Gerard M. Campbell & Vincent A. Mabert, 1991. "Cyclical Schedules for Capacitated Lot Sizing with Dynamic Demands," Management Science, INFORMS, vol. 37(4), pages 409-427, April.
    3. Robert C. Carlson & James V. Jucker & Dean H. Kropp, 1979. "Less Nervous MRP Systems: A Dynamic Economic Lot-Sizing Approach," Management Science, INFORMS, vol. 25(8), pages 754-761, August.
    4. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    5. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    6. Marshall Fisher & Kamalini Ramdas & Yu-Sheng Zheng, 2001. "Ending Inventory Valuation in Multiperiod Production Scheduling," Management Science, INFORMS, vol. 47(5), pages 679-692, May.
    7. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    8. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    9. Silvio Alexandre de Araujo & Bert De Reyck & Zeger Degraeve & Ioannis Fragkos & Raf Jans, 2015. "Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 431-448, August.
    10. Awi Federgruen & Michal Tzur, 1994. "Minimal Forecast Horizons and a New Planning Procedure for the General Dynamic Lot Sizing Model: Nervousness Revisited," Operations Research, INFORMS, vol. 42(3), pages 456-468, June.
    11. Stadtler, Hartmut, 2000. "Improved rolling schedules for the dynamic single level lot sizing problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 14079, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    13. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    14. Hartmut Stadtler, 2000. "Improved Rolling Schedules for the Dynamic Single-Level Lot-Sizing Problem," Management Science, INFORMS, vol. 46(2), pages 318-326, February.
    15. Süral, Haldun & Denizel, Meltem & Van Wassenhove, Luk N., 2009. "Lagrangean relaxation based heuristics for lot sizing with setup times," European Journal of Operational Research, Elsevier, vol. 194(1), pages 51-63, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dziuba, Daryna & Almeder, Christian, 2023. "New construction heuristic for capacitated lot sizing problems," European Journal of Operational Research, Elsevier, vol. 311(3), pages 906-920.
    2. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    3. van den Heuvel, W. & Wagelmans, A.P.M., 2002. "A Note on Ending Inventory Valuation in Multiperiod Production Scheduling," ERIM Report Series Research in Management ERS-2002-63-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    6. Nguyen, Christine & Dessouky, Maged & Toriello, Alejandro, 2014. "Consolidation strategies for the delivery of perishable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 108-121.
    7. Kerem Akartunalı & Ioannis Fragkos & Andrew J. Miller & Tao Wu, 2016. "Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 766-780, November.
    8. Hartmut Stadtler & Malte Meistering, 2019. "Model formulations for the capacitated lot-sizing problem with service-level constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1025-1056, December.
    9. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    10. Hadi Farhangi, 2021. "Multi-Echelon Supply Chains with Lead Times and Uncertain Demands," SN Operations Research Forum, Springer, vol. 2(3), pages 1-25, September.
    11. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    12. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    13. Wilco Van den Heuvel & Albert P. M. Wagelmans, 2010. "Worst-Case Analysis for a General Class of Online Lot-Sizing Heuristics," Operations Research, INFORMS, vol. 58(1), pages 59-67, February.
    14. Akartunalı, Kerem & Dauzère-Pérès, Stéphane, 2022. "Dynamic lot sizing with stochastic demand timing," European Journal of Operational Research, Elsevier, vol. 302(1), pages 221-229.
    15. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    16. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, vol. 49(8), pages 1039-1054, August.
    17. Ioannis Fragkos & Zeger Degraeve & Bert De Reyck, 2016. "A Horizon Decomposition Approach for the Capacitated Lot-Sizing Problem with Setup Times," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 465-482, August.
    18. Mohammad Ebrahim Arbabian & Shi Chen & Kamran Moinzadeh, 2021. "Capacity Expansions with Bundled Supplies of Attributes: An Application to Server Procurement in Cloud Computing," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 191-209, 1-2.
    19. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    20. Toy, Ayhan Özgür & Berk, Emre, 2013. "Dynamic lot sizing for a warm/cold process: Heuristics and insights," International Journal of Production Economics, Elsevier, vol. 145(1), pages 53-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:203-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.