IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v292y2021i2p532-547.html
   My bibliography  Save this article

Preemptive stacker crane problem: Extending tree-based properties and construction heuristics

Author

Listed:
  • Graf, Benjamin

Abstract

The stacker crane problem (SCP) considers the cost-minimal routing of a single unit-capacity vehicle that needs to satisfy a given set of one-to-one pickup and delivery requests. In the preemptive stacker crane problem (PSCP), the vehicle is additionally allowed to temporarily drop its payload at arbitrary intermediate locations. While a payload is stored at an intermediate location, other requests may be performed. Prior work in the literature has shown that a specific tree structure is sufficient to represent optimal solutions for the PSCP. Building on this tree structure, this work establishes bounds on the benefits of preemption and additional drop locations that are neither associated with a pickup nor a delivery location, proposes reduced solution representations and describes algorithms for subproblems solvable in polynomial time. Furthermore, heuristic construction methods adapted for the PSCP from well-known heuristics for the asymmetric traveling salesman problem (ATSP) and capacitated vehicle routing problem (CVRP) are presented. The previously described and newly proposed adapted heuristics are evaluated and compared in a large scale computational study with respect to computation time, solution quality and other solution characteristics.

Suggested Citation

  • Graf, Benjamin, 2021. "Preemptive stacker crane problem: Extending tree-based properties and construction heuristics," European Journal of Operational Research, Elsevier, vol. 292(2), pages 532-547.
  • Handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:532-547
    DOI: 10.1016/j.ejor.2020.10.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.10.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    2. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    3. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    4. Glover, Fred & Gutin, Gregory & Yeo, Anders & Zverovich, Alexey, 2001. "Construction heuristics for the asymmetric TSP," European Journal of Operational Research, Elsevier, vol. 129(3), pages 555-568, March.
    5. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    2. Tzur, Michal & Drezner, Ehud, 2011. "A lookahead partitioning heuristic for a new assignment and scheduling problem in a distribution system," European Journal of Operational Research, Elsevier, vol. 215(2), pages 325-336, December.
    3. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    4. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    5. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    6. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    7. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    8. Paul Buijs & Jose Alejandro Lopez Alvarez & Marjolein Veenstra & Kees Jan Roodbergen, 2016. "Improved Collaborative Transport Planning at Dutch Logistics Service Provider Fritom," Interfaces, INFORMS, vol. 46(2), pages 119-132, April.
    9. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    10. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    11. Gupta, Diwakar & Chen, Hao-Wei & Miller, Lisa A. & Surya, Fajarrani, 2010. "Improving the efficiency of demand-responsive paratransit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 201-217, May.
    12. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    13. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    14. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    15. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    16. Jesus Gonzalez-Feliu, 2012. "Cost optimisation in freight distribution with cross-docking: N-echelon location routing problem," Post-Print halshs-00565329, HAL.
    17. Jan Pelikán & Jan Fábry, 2012. "Heuristics for routes generation in pickup and delivery problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 463-472, September.
    18. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    19. Adria Soriano & Margaretha Gansterer & Richard F. Hartl, 2018. "The two-region multi-depot pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1077-1108, October.
    20. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:532-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.