IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v196y2018icp43-55.html
   My bibliography  Save this article

Vehicle routing problem in omni-channel retailing distribution systems

Author

Listed:
  • Abdulkader, M.M.S.
  • Gajpal, Yuvraj
  • ElMekkawy, Tarek Y.

Abstract

This paper introduces a variant of the vehicle routing problem where a group of retail stores are served from a distribution center using a fleet of vehicles. Moreover, products are distributed to consumers from some of these retail stores based on product availability at inventory and by means of the same fleet of vehicles. This variant of the vehicle routing problem can be found in omni-channel retail distribution systems. Retail distribution systems are considered omni- or multi-channel systems when consumers can either place orders online or physically visit the stores to buy the products. In this problem, the decisions of assigning consumers to retail stores based on inventory availability are combined with finding the routes of vehicles. The new problem can be considered a generalization of both capacitated vehicle routing problem and the pickup and delivery problem. The paper presents a mathematical formulation to describe this problem and proposes two solution approaches (two-phase heuristic and multi-ant colony algorithm). We also generate new benchmark problem instances to evaluate the performance of the proposed solution approaches.

Suggested Citation

  • Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
  • Handle: RePEc:eee:proeco:v:196:y:2018:i:c:p:43-55
    DOI: 10.1016/j.ijpe.2017.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317303584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    2. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Rejoinder on: Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 45-47, July.
    3. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    4. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    5. Letchford, Adam N. & Salazar-González, Juan-José, 2015. "Stronger multi-commodity flow formulations of the Capacitated Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 730-738.
    6. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    7. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    8. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    9. Ting, Ching-Jung & Chen, Chia-Ho, 2013. "A multiple ant colony optimization algorithm for the capacitated location routing problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 34-44.
    10. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    11. Herhausen, Dennis & Binder, Jochen & Schoegel, Marcus & Herrmann, Andreas, 2015. "Integrating Bricks with Clicks: Retailer-Level and Channel-Level Outcomes of Online–Offline Channel Integration," Journal of Retailing, Elsevier, vol. 91(2), pages 309-325.
    12. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    13. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    14. Kalantari, Bahman & Hill, Arthur V. & Arora, Sant R., 1985. "An algorithm for the traveling salesman problem with pickup and delivery customers," European Journal of Operational Research, Elsevier, vol. 22(3), pages 377-386, December.
    15. Verhoef, Peter C. & Kannan, P.K. & Inman, J. Jeffrey, 2015. "From Multi-Channel Retailing to Omni-Channel Retailing," Journal of Retailing, Elsevier, vol. 91(2), pages 174-181.
    16. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    17. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    18. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    19. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    20. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    21. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    22. Beck, Norbert & Rygl, David, 2015. "Categorization of multiple channel retailing in Multi-, Cross-, and Omni†Channel Retailing for retailers and retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 27(C), pages 170-178.
    23. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    24. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    25. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    26. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    27. Lokin, F. C. J., 1979. "Procedures for travelling salesman problems with additional constraints," European Journal of Operational Research, Elsevier, vol. 3(2), pages 135-141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Sawicki & Hanna Sawicka, 2021. "Optimisation of the Two-Tier Distribution System in Omni-Channel Environment," Energies, MDPI, vol. 14(22), pages 1-22, November.
    2. Hübner, Alexander & Hense, Jonas & Dethlefs, Christian, 2022. "The revival of retail stores via omnichannel operations: A literature review and research framework," European Journal of Operational Research, Elsevier, vol. 302(3), pages 799-818.
    3. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    4. Cai, Ya-Jun & Lo, Chris K.Y., 2020. "Omni-channel management in the new retailing era: A systematic review and future research agenda," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    6. Zhang, Jie & Meng, Meng & Wong, Yiik Diew & Ieromonachou, Petros & Wang, David Z.W., 2021. "A data-driven dynamic repositioning model in bicycle-sharing systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Gupta, Vishal Kumar & Ting, Q.U. & Tiwari, Manoj Kumar, 2019. "Multi-period price optimization problem for omnichannel retailers accounting for customer heterogeneity," International Journal of Production Economics, Elsevier, vol. 212(C), pages 155-167.
    8. Surendra Reddy Kancharla & Gitakrishnan Ramadurai, 2019. "Multi-depot Two-Echelon Fuel Minimizing Routing Problem with Heterogeneous Fleets: Model and Heuristic," Networks and Spatial Economics, Springer, vol. 19(3), pages 969-1005, September.
    9. Xueqi Wu & Zhi‐Long Chen, 2022. "Fulfillment scheduling for buy‐online‐pickup‐in‐store orders," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2982-3003, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    3. Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.
    4. Timothy Curtois & Dario Landa-Silva & Yi Qu & Wasakorn Laesanklang, 2018. "Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 151-192, June.
    5. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    6. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    7. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    8. Dirk Männel & Andreas Bortfeldt, 2015. "A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints," FEMM Working Papers 150015, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    9. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    10. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    11. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.
    12. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    15. Yanik, Seda & Bozkaya, Burcin & deKervenoael, Ronan, 2014. "A new VRPPD model and a hybrid heuristic solution approach for e-tailing," European Journal of Operational Research, Elsevier, vol. 236(3), pages 879-890.
    16. Yiwei Fan & Gang Wang & Xiaoling Lu & Gaobin Wang, 2019. "Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    17. Tzur, Michal & Drezner, Ehud, 2011. "A lookahead partitioning heuristic for a new assignment and scheduling problem in a distribution system," European Journal of Operational Research, Elsevier, vol. 215(2), pages 325-336, December.
    18. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    19. Margaretha Gansterer & Richard F. Hartl & Philipp E. H. Salzmann, 2018. "Exact solutions for the collaborative pickup and delivery problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 357-371, June.
    20. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:196:y:2018:i:c:p:43-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.