IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i3p886-901.html
   My bibliography  Save this article

Multi-stage stochastic programming models for provisioning cloud computing resources

Author

Listed:
  • Bülbül, Kerem
  • Noyan, Nilay
  • Erol, Hazal

Abstract

We focus on the resource provisioning problem of a cloud consumer from an Infrastructure-as-a-Service type of cloud. The cloud provider offers two deployment options, which can be mixed and matched as appropriate. Cloud instances may be reserved for a fixed time period in advance at a smaller usage cost per hour but require a full commitment and payment for the entire contract duration. In contrast, on-demand instances reflect a pay-as-you-go policy at a premium. The trade-off between these two options is rooted in the inherent uncertainty in demand and price and makes it attractive to complement a base reserved capacity with on-demand capacity to hedge against the spikes in demand. This paper provides several novel multi-stage stochastic programming formulations to enable a cloud consumer to handle the cloud resource provisioning problem at a tactical level. We first formulate the cloud resource provisioning problem as a risk-neutral multi-stage stochastic program, which serves as the base model for further modeling variants. In our second set of models, we also incorporate a certain concept of system reliability. In particular, chance constraints integrated into the base formulation require a minimum service level met from reserved capacity, provide more visibility into the future available capacity, and smooth out expensive on-demand usage by hedging against possible demand fluctuations. An extensive computational study demonstrates the value of the proposed models by discussing computational performance, gleaning practical managerial insights from the analysis of the solutions of the proposed models, and quantifying the value of the stochastic solutions.

Suggested Citation

  • Bülbül, Kerem & Noyan, Nilay & Erol, Hazal, 2021. "Multi-stage stochastic programming models for provisioning cloud computing resources," European Journal of Operational Research, Elsevier, vol. 288(3), pages 886-901.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:886-901
    DOI: 10.1016/j.ejor.2020.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilyas Iyoob & Emrah Zarifoglu & A. B. Dieker, 2013. "Cloud Computing Operations Research," Service Science, INFORMS, vol. 5(2), pages 88-101, June.
    2. Francois V. Louveaux, 1980. "A Solution Method for Multistage Stochastic Programs with Recourse with Application to an Energy Investment Problem," Operations Research, INFORMS, vol. 28(4), pages 889-902, August.
    3. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    4. LOUVEAUX, François V., 1980. "A solution method for multistage stochastic programs with recourse with application to an energy investment problem," LIDAM Reprints CORE 415, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    6. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    2. Li, Bo & Tan, Zhen & Arreola-Risa, Antonio & Huang, Yiwei, 2023. "On the improvement of uncertain cloud service capacity," International Journal of Production Economics, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    3. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    4. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    5. John R. Birge & Charles H. Rosa, 1996. "Incorporating Investment Uncertainty into Greenhouse Policy Models," The Energy Journal, , vol. 17(1), pages 79-90, January.
    6. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    7. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
    8. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    9. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    10. Xie, Fei & Huang, Yongxi, 2018. "A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 130-148.
    11. Zhenfang Liu & Yang Zhou & Gordon Huang & Bin Luo, 2019. "Risk Aversion Based Inexact Stochastic Dynamic Programming Approach for Water Resources Management Planning under Uncertainty," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    12. Kai Pan & Yongpei Guan, 2016. "Strong Formulations for Multistage Stochastic Self-Scheduling Unit Commitment," Operations Research, INFORMS, vol. 64(6), pages 1482-1498, December.
    13. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    14. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Feb 2021.
    15. Smirnov, Dina & van Jaarsveld, Willem & Atan, Zümbül & de Kok, Ton, 2021. "Long-term resource planning in the high-tech industry: Capacity or inventory?," European Journal of Operational Research, Elsevier, vol. 293(3), pages 926-940.
    16. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    17. Céline Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
    18. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    19. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    20. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:886-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.