IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i2p485-497.html
   My bibliography  Save this article

Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties

Author

Listed:
  • Hu, Zhengyang
  • Hu, Guiping

Abstract

Uncertainty is among the significant concerns in production scheduling. It has become increasingly important to take uncertainties into consideration for lot-sizing and scheduling. In this paper, we adopt the Hybrid Stochastic and Robust Optimization (HSRO) approach in lot-sizing and scheduling problems in which suppliers have the flexibility of satisfying a fraction of demand based on the market and their policies. Two types of uncertainties have been considered simultaneously: demand and overtime processing cost. Robust optimization is adopted for uncertain demand and Sample Average Approximation (SAA) technique is applied to solve the stochastic program for uncertain overtime processing cost. Numerical results based on a manufacturing company has been conducted to not only validate the proposed hybrid model but also quantitatively demonstrate the merit of our approach. Sample size stability test and sensitivity analyses on various parameters have also been conducted.

Suggested Citation

  • Hu, Zhengyang & Hu, Guiping, 2020. "Hybrid stochastic and robust optimization model for lot-sizing and scheduling problems under uncertainties," European Journal of Operational Research, Elsevier, vol. 284(2), pages 485-497.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:485-497
    DOI: 10.1016/j.ejor.2019.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719310707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    2. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    3. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. Rego, José Roberto do & Mesquita, Marco Aurélio de, 2015. "Demand forecasting and inventory control: A simulation study on automotive spare parts," International Journal of Production Economics, Elsevier, vol. 161(C), pages 1-16.
    6. Michel Minoux, 2018. "Robust and stochastic multistage optimisation under Markovian uncertainty with applications to production/inventory problems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 565-583, January.
    7. M. Fattahi & M. Mahootchi & S.M. Moattar Husseini & E. Keyvanshokooh & F. Alborzi, 2015. "Investigating replenishment policies for centralised and decentralised supply chains using stochastic programming approach," International Journal of Production Research, Taylor & Francis Journals, vol. 53(1), pages 41-69, January.
    8. Huasheng Yang & Vincent Low & Canrong Zhang & Li Zheng & Lixin Miao, 2017. "Behaviour perception-based disruption models for the parallel machine capacitated lot-sizing and scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3058-3072, June.
    9. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    10. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    11. Hu, Zhengyang & Hu, Guiping, 2016. "A two-stage stochastic programming model for lot-sizing and scheduling under uncertainty," International Journal of Production Economics, Elsevier, vol. 180(C), pages 198-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Amin Seyfi & İhsan Yanıkoğlu & Görkem Yılmaz, 2025. "Multi-stage scenario-based stochastic programming for managing lot sizing and workforce scheduling at Vestel," Annals of Operations Research, Springer, vol. 344(2), pages 911-936, January.
    2. Schlenkrich, Manuel & Parragh, Sophie N., 2024. "Capacitated multi-item multi-echelon lot sizing with setup carry-over under uncertain demand," International Journal of Production Economics, Elsevier, vol. 277(C).
    3. Wu, Wei & Hayashi, Takito & Haruyasu, Kato & Tang, Liang, 2023. "Exact algorithms based on a constrained shortest path model for robust serial-batch and parallel-batch scheduling problems," European Journal of Operational Research, Elsevier, vol. 307(1), pages 82-102.
    4. Zhengyang Hu & Viren Parwani & Guiping Hu, 2021. "Closed-Loop Supply Chain Network Design under Uncertainties Using Fuzzy Decision Making," Logistics, MDPI, vol. 5(1), pages 1-16, March.
    5. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    6. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    4. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    5. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    6. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    7. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.
    8. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    9. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    10. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    11. Dimitris Bertsimas & David Gamarnik & Alexander Anatoliy Rikun, 2011. "Performance Analysis of Queueing Networks via Robust Optimization," Operations Research, INFORMS, vol. 59(2), pages 455-466, April.
    12. Robin Vujanic & Paul Goulart & Manfred Morari, 2016. "Robust Optimization of Schedules Affected by Uncertain Events," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 1033-1054, December.
    13. Erin K. Doolittle & Hervé L. M. Kerivin & Margaret M. Wiecek, 2018. "Robust multiobjective optimization with application to Internet routing," Annals of Operations Research, Springer, vol. 271(2), pages 487-525, December.
    14. Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
    15. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    16. Omid Sanei Bajgiran & Masoumeh Kazemi Zanjani & Mustapha Nourelfath, 2017. "Forest harvesting planning under uncertainty: a cardinality-constrained approach," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1914-1929, April.
    17. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    18. Jannis Kurtz, 2018. "Robust combinatorial optimization under budgeted–ellipsoidal uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 315-337, December.
    19. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    20. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:485-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.