IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v279y2019i1p38-53.html
   My bibliography  Save this article

Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules

Author

Listed:
  • Servranckx, Tom
  • Vanhoucke, Mario

Abstract

In the resource-constrained project scheduling problem with alternative subgraphs (RCPSP-AS), we model alternative execution modes for work packages in the project. In contrast to the traditional RCPSP, the project network consists of different alternative work packages. To that purpose, the scheduling problem selects the best possible alternatives for the construction of the baseline schedule. On top of that, several back-up schedules are created in order to cope with unexpected changes along the project progress. In the presence of uncertainty, we can then switch between these alternative schedules at different decision moments in order to bring the project back on track. The alternative schedules are combined in a set of schedules that should be constructed by the project manager prior to project execution. We present a computational experiment to investigate the ability of using such a set of schedules in the presence of uncertainty during project execution. The experiments indicate that using a set of schedules outperforms the use of a single schedule, even when the uncertainty level is relatively low. The results also show that the composition of this schedule set is important. Therefore, a degree of schedule similarity is proposed to analyse this composition, and results show that a mix of similar and dissimilar schedules performs best. Finally, we show that the solution quality of each schedule in the set has an impact on the performance of the schedule switches given the project disruptions.

Suggested Citation

  • Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
  • Handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:38-53
    DOI: 10.1016/j.ejor.2019.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719304278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kis, Tamas, 2003. "Job-shop scheduling with processing alternatives," European Journal of Operational Research, Elsevier, vol. 151(2), pages 307-332, December.
    2. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    3. Čapek, R. & Šůcha, P. & Hanzálek, Z., 2012. "Production scheduling with alternative process plans," European Journal of Operational Research, Elsevier, vol. 217(2), pages 300-311.
    4. Artigues, Christian & Billaut, Jean-Charles & Esswein, Carl, 2005. "Maximization of solution flexibility for robust shop scheduling," European Journal of Operational Research, Elsevier, vol. 165(2), pages 314-328, September.
    5. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    6. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    7. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy, 2008. "Proactive heuristic procedures for robust project scheduling: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 189(3), pages 723-733, September.
    8. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    9. Wiers, V. C. S., 1997. "A review of the applicability of OR and AI scheduling techniques in practice," Omega, Elsevier, vol. 25(2), pages 145-153, April.
    10. Tavares, L. Valadares & Antunes Ferreira, J. A. & Silva Coelho, J., 1998. "On the optimal management of project risk," European Journal of Operational Research, Elsevier, vol. 107(2), pages 451-469, June.
    11. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    12. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    3. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).
    4. Fan, Lurong & Wang, Binyu & Song, Xiaoling, 2023. "An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    3. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    4. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    5. Kaut, Michal & Vaagen, Hajnalka & Wallace, Stein W., 2021. "The combined impact of stochastic and correlated activity durations and design uncertainty on project plans," International Journal of Production Economics, Elsevier, vol. 233(C).
    6. Said, Samer S. & Haouari, Mohamed, 2015. "A hybrid simulation-optimization approach for the robust Discrete Time/Cost Trade-off Problem," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 628-636.
    7. Shichang Xiao & Shudong Sun & Jionghua (Judy) Jin, 2017. "Surrogate Measures for the Robust Scheduling of Stochastic Job Shop Scheduling Problems," Energies, MDPI, vol. 10(4), pages 1-26, April.
    8. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    9. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    10. Xiong, Jian & Xing, Li-ning & Chen, Ying-wu, 2013. "Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns," International Journal of Production Economics, Elsevier, vol. 141(1), pages 112-126.
    11. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    12. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    13. HazIr, Öncü & Haouari, Mohamed & Erel, Erdal, 2010. "Robust scheduling and robustness measures for the discrete time/cost trade-off problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 633-643, December.
    14. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    15. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    16. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    17. Briand, Cyril & La, H. Trung & Erschler, Jacques, 2006. "A new sufficient condition of optimality for the two-machine flowshop problem," European Journal of Operational Research, Elsevier, vol. 169(3), pages 712-722, March.
    18. Zhu, Xia & Ruiz, Rubén & Li, Shiyu & Li, Xiaoping, 2017. "An effective heuristic for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 257(3), pages 746-762.
    19. Majid Askarifard & Hamidreza Abbasianjahromi & Mehran Sepehri & Ehsanollah Zeighami, 2021. "A robust multi-objective optimization model for project scheduling considering risk and sustainable development criteria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11494-11524, August.
    20. HazIr, Öncü & Erel, Erdal & Günalay, Yavuz, 2011. "Robust optimization models for the discrete time/cost trade-off problem," International Journal of Production Economics, Elsevier, vol. 130(1), pages 87-95, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:279:y:2019:i:1:p:38-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.