IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v269y2018i2p749-759.html
   My bibliography  Save this article

Effect of exit placement on evacuation plans

Author

Listed:
  • Kurdi, Heba A.
  • Al-Megren, Shiroq
  • Althunyan, Reham
  • Almulifi, Asma

Abstract

Human behaviour while trying to escape a room via its main means of egress is an important issue in social science, complex systems research, and architectural planning. Disasters resulting from human crowding have increased in recent years. In such cases, it is important to consider several factors, including the smooth flow of pedestrians and the positions of obstacles and exits. This paper describes the effects of exit placement in environments congested with pedestrians. An evacuation system was designed and implemented with multiple exits in four different arrangements. The system utilised two artificial intelligence (AI) techniques—simulated annealing (SA) and depth-first search (DFS)—to examine the optimal balance between the placements of the various exits. Simulation and experimental results demonstrated that adjacently placed exits resulted in increased crowding at some exits over others when a nearest-exit path technique (DFS) was adopted as the evacuation strategy, resulting in longer evacuation times. Of the two examined evacuation techniques, SA proved superior, as it optimally balanced the pedestrian distribution over all available exits in all scenarios. In addition, the optimal-path technique (SA) did not suffer the ill-effects of adjacent exit placement. The simulation results confirm the importance of developing optimal evacuation plans, which could significantly outperform commonly employed nearest-exit evacuation strategies.

Suggested Citation

  • Kurdi, Heba A. & Al-Megren, Shiroq & Althunyan, Reham & Almulifi, Asma, 2018. "Effect of exit placement on evacuation plans," European Journal of Operational Research, Elsevier, vol. 269(2), pages 749-759.
  • Handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:749-759
    DOI: 10.1016/j.ejor.2018.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718300869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.
    2. Fry, John & Binner, Jane M., 2016. "Elementary modelling and behavioural analysis for emergency evacuations using social media," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1014-1023.
    3. Daoliang, Zhao & Lizhong, Yang & Jian, Li, 2006. "Exit dynamics of occupant evacuation in an emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 501-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ștefan Ionescu & Ionuț Nica & Nora Chiriță, 2021. "Cybernetics Approach Using Agent-Based Modeling in the Process of Evacuating Educational Institutions in Case of Disasters," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    2. Xuefeng Zhao & Lingli Huang & Zhe Sun & Xiongtao Fan & Meng Zhang, 2023. "Design Optimization of Building Exit Locations Based on Building Information Model and Ontology," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    3. Heba Kurdi & Amal Alzuhair & Dana Alotaibi & Hesah Alsweed & Noor Almoqayyad & Razan Albaqami & Alhanoof Althnian & Najla Alnabhan & A. B. M. Alim Al Islam, 2022. "Crowd Evacuation in Hajj Stoning Area: Planning through Modeling and Simulation," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    4. Ren, Huan & Yan, Yuyue & Gao, Fengqiang, 2021. "Variable guiding strategies in multi-exits evacuation: Pursuing balanced pedestrian densities," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    5. Kurdi, Heba & Almulifi, Asma & Al-Megren, Shiroq & Youcef-Toumi, Kamal, 2021. "A balanced evacuation algorithm for facilities with multiple exits," European Journal of Operational Research, Elsevier, vol. 289(1), pages 285-296.
    6. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurdi, Heba & Almulifi, Asma & Al-Megren, Shiroq & Youcef-Toumi, Kamal, 2021. "A balanced evacuation algorithm for facilities with multiple exits," European Journal of Operational Research, Elsevier, vol. 289(1), pages 285-296.
    2. Sun, Lishan & Yuan, Guang & Yao, Liya & Cui, Li & Kong, Dewen, 2021. "Study on strategies for alighting and boarding in subway stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    4. Yong-ling Zhang & Xiao-bing Zhou, 2017. "The occurrence laws of campus stampede accidents in China and its prevention and control measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 659-673, June.
    5. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    6. Aros, Susan K. & Gibbons, Deborah E., 2018. "Exploring communication media options in an inter-organizational disaster response coordination network using agent-based simulation," European Journal of Operational Research, Elsevier, vol. 269(2), pages 451-465.
    7. Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.
    8. Jorge A. Huertas & Daniel Duque & Ethel Segura-Durán & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2020. "Evacuation dynamics: a modeling and visualization framework," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 661-691, September.
    9. Caballero, William N. & Lunday, Brian J., 2019. "Influence modeling: Mathematical programming representations of persuasion under either risk or uncertainty," European Journal of Operational Research, Elsevier, vol. 278(1), pages 266-282.
    10. Yanyan Niu & Jia Yu & Dawei Lu & Renwu Mu & Jiahong Wen, 2022. "Spatial Allocation Method of Evacuation Guiders in Urban Open Public Spaces: A Case Study of Binjiang Green Space in Xuhui District, Shanghai, China," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    11. Knut Haase & Mathias Kasper & Matthes Koch & Sven Müller, 2019. "A Pilgrim Scheduling Approach to Increase Safety During the Hajj," Operations Research, INFORMS, vol. 67(2), pages 376-406, March.
    12. Choi, Tsan-Ming & Guo, Shu & Luo, Suyuan, 2020. "When blockchain meets social-media: Will the result benefit social media analytics for supply chain operations management?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    13. Can Liao & Kejun Zhu & Haixiang Guo & Jian Tang, 2019. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    14. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    15. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    16. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    17. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    18. Frank, G.A. & Dorso, C.O., 2011. "Room evacuation in the presence of an obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2135-2145.
    19. Comrie, E.L. & Burns, C. & Coulson, A.B. & Quigley, J. & Quigley, K.F., 2019. "Rationalising the use of Twitter by official organisations during risk events: Operationalising the Social Amplification of Risk Framework through causal loop diagrams," European Journal of Operational Research, Elsevier, vol. 272(2), pages 792-801.
    20. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:269:y:2018:i:2:p:749-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.