IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i1p29-45.html
   My bibliography  Save this article

Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows

Author

Listed:
  • Muter, İbrahim
  • Birbil, Ş. İlker
  • Bülbül, Kerem

Abstract

In a recent work, Muter, Birbil, and Bülbül, (2013) identified and characterized a general class of linear programming (LP) problems – known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear together. In a typical CDR-problem, the number of linking constraints grows very quickly with the number of variables, which motivates generating both columns and their associated linking constraints simultaneously on-the-fly. In this paper, we expose the decomposable structure of CDR-problems via Benders decomposition. However, this approach brings on its own theoretical challenges. One group of variables is generated in the Benders master problem, while the generation of the linking constraints is relegated to the Benders subproblem along with the second group of variables. A fallout of this separation is that only a partial description of the dual of the Benders subproblem is available over the course of the algorithm. We demonstrate how the pricing subproblem for the column generation applied to the Benders master problem does also update the dual polyhedron and the existing Benders cuts in the master problem to ensure convergence. Ultimately, a novel integration of Benders cut generation and the simultaneous generation of columns and constraints yields a brand-new algorithm for solving large-scale CDR-problems. We illustrate the application of the proposed method on a time-constrained routing problem. Our numerical experiments confirm the outstanding performance of the new decomposition method.

Suggested Citation

  • Muter, İbrahim & Birbil, Ş. İlker & Bülbül, Kerem, 2018. "Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows," European Journal of Operational Research, Elsevier, vol. 264(1), pages 29-45.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:29-45
    DOI: 10.1016/j.ejor.2017.06.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717305854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.06.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    2. Avella, Pasquale & D'Auria, Bernardo & Salerno, Saverio, 2006. "A LP-based heuristic for a time-constrained routing problem," European Journal of Operational Research, Elsevier, vol. 173(1), pages 120-124, August.
    3. Zak, Eugene J., 2002. "Modeling multistage cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 313-327, September.
    4. Gelareh, Shahin & Neamatian Monemi, Rahimeh & Nickel, Stefan, 2015. "Multi-period hub location problems in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 67-94.
    5. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    6. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    7. Muter, İbrahim & İlker Birbil, Ş. & Bülbül, Kerem & Şahin, Güvenç, 2012. "A note on “A LP-based heuristic for a time-constrained routing problem”," European Journal of Operational Research, Elsevier, vol. 221(2), pages 306-307.
    8. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    9. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    10. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    11. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    12. Anne Mercier, 2008. "A Theoretical Comparison of Feasibility Cuts for the Integrated Aircraft-Routing and Crew-Pairing Problem," Transportation Science, INFORMS, vol. 42(1), pages 87-104, February.
    13. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    14. Fischetti, Matteo & Ljubić, Ivana & Sinnl, Markus, 2016. "Benders decomposition without separability: A computational study for capacitated facility location problems," European Journal of Operational Research, Elsevier, vol. 253(3), pages 557-569.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.
    2. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    3. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    4. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    5. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    6. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    7. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    8. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    9. Kristiansen, Simon & Sørensen, Matias & Stidsen, Thomas R., 2011. "Elective course planning," European Journal of Operational Research, Elsevier, vol. 215(3), pages 713-720, December.
    10. Panagiotis Andrianesis & Dimitris Bertsimas & Michael C. Caramanis & William W. Hogan, 2020. "Computation of Convex Hull Prices in Electricity Markets with Non-Convexities using Dantzig-Wolfe Decomposition," Papers 2012.13331, arXiv.org, revised Oct 2021.
    11. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    12. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    13. Réal Carbonneau & Gilles Caporossi & Pierre Hansen, 2014. "Globally Optimal Clusterwise Regression By Column Generation Enhanced with Heuristics, Sequencing and Ending Subset Optimization," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 219-241, July.
    14. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.
    15. Eliashberg, Jehoshua & Hegie, Quintus & Ho, Jason & Huisman, Dennis & Miller, Steven J. & Swami, Sanjeev & Weinberg, Charles B. & Wierenga, Berend, 2009. "Demand-driven scheduling of movies in a multiplex," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 75-88.
    16. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    17. Alfandari, Laurent & Plateau, Agnès & Scheplerc, Xavier, 2014. "A Branch-and-Price-and-Cut Approach for Sustainable Crop Rotation Planning," ESSEC Working Papers WP1408, ESSEC Research Center, ESSEC Business School.
    18. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    19. Laurent Alfandari & Agnès Plateau & Xavier Schepler, 2014. "A Branch-and-Price-and-Cut approach for Sustainable Crop Rotation Planning," Working Papers hal-00987708, HAL.
    20. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:1:p:29-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.