IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i3p875-888.html
   My bibliography  Save this article

An exact method for the sensitivity analysis of systems simulated by rejection techniques

Author

Listed:
  • Joshi, Mark S.
  • Zhu, Dan

Abstract

We compute first- and second-order sensitivities of functions simulated by rejection techniques. The methodology is to perform a measure change on every acceptance test, so that the pathwise discontinuities resulting from the rejection decisions are removed. The change of measure is chosen to be optimal in terms of minimizing variances of the likelihood ratio terms. Applications are presented for computing Greeks of equity options with certain Le´vy-driven underlyings and to finding sensitivities of performance measures in queueing systems. The numerical results demonstrate the efficacy and speed of the method.

Suggested Citation

  • Joshi, Mark S. & Zhu, Dan, 2016. "An exact method for the sensitivity analysis of systems simulated by rejection techniques," European Journal of Operational Research, Elsevier, vol. 254(3), pages 875-888.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:875-888
    DOI: 10.1016/j.ejor.2016.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716302430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
    2. Jiun Hong Chan & Mark Joshi, 2015. "Optimal limit methods for computing sensitivities of discontinuous integrals including triggerable derivative securities," IISE Transactions, Taylor & Francis Journals, vol. 47(9), pages 978-997, September.
    3. Mark Joshi & Chao Yang, 2011. "Algorithmic Hessians and the fast computation of cross-gamma risk," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 878-892.
    4. Paul Glasserman, 1991. "Structural Conditions for Perturbation Analysis Derivative Estimation: Finite-Time Performance Indices," Operations Research, INFORMS, vol. 39(5), pages 724-738, October.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    6. Hisashi Tanizaki, 2008. "A Simple Gamma Random Number Generator for Arbitrary Shape Parameters," Economics Bulletin, AccessEcon, vol. 3(7), pages 1-10.
    7. Eric Benhamou, 2003. "Optimal Malliavin Weighting Function for the Computation of the Greeks," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 37-53, January.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. L. Jeff Hong & Guangwu Liu, 2010. "Pathwise Estimation of Probability Sensitivities Through Terminating or Steady-State Simulations," Operations Research, INFORMS, vol. 58(2), pages 357-370, April.
    10. repec:ebl:ecbull:v:3:y:2008:i:7:p:1-10 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Daluiso & Giorgio Facchinetti, 2018. "Algorithmic Differentiation For Discontinuous Payoffs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    3. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    4. Till Massing, 2019. "What is the best Lévy model for stock indices? A comparative study with a view to time consistency," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(3), pages 277-344, September.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    7. Lingyan Cao & Zheng-Feng Guo, 2012. "A Comparison Of Delta Hedging Under Two Price Distribution Assumptions By Likelihood Ratio," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 6(1), pages 25-34.
    8. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    9. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    11. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    12. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2021. "Correlating Lévy processes with self-decomposability: applications to energy markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1253-1280, December.
    13. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    15. Luiz Vitiello & Ivonia Rebelo, 2015. "A note on the pricing of multivariate contingent claims under a transformed-gamma distribution," Review of Derivatives Research, Springer, vol. 18(3), pages 291-300, October.
    16. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    17. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    18. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    19. repec:dau:papers:123456789/1392 is not listed on IDEAS
    20. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    21. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:875-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.