IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i3p755-768.html
   My bibliography  Save this article

New formulations for the elementary shortest-path problem visiting a given set of nodes

Author

Listed:
  • Castro de Andrade, Rafael

Abstract

Consider a directed graph G=(V,A) with a set of nodes V and a set of arcs A, and let cuv denote the length of an arc uv ∈ A. Given two nodes s and t of V, we are interested in the problem of determining a shortest-path from s to t in G that must visit only once all nodes of a given set P⊆V−{s,t}. This problem is NP-hard for P=V−{s,t}. In this paper, we develop three new compact formulations for this problem. The first one is based on the spanning tree polytope. The second model is a primal-dual mixed integer model presenting a small number of variables and constraints; and the last one is obtained from a flow-based compact model for the Steiner traveling salesman problem (TSP). Numerical experiments indicate that the second compact model allows the efficient solution of randomly generated and benchmark (from the TSPLIB) instances of the problem with hundreds of nodes.

Suggested Citation

  • Castro de Andrade, Rafael, 2016. "New formulations for the elementary shortest-path problem visiting a given set of nodes," European Journal of Operational Research, Elsevier, vol. 254(3), pages 755-768.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:755-768
    DOI: 10.1016/j.ejor.2016.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716303289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    2. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    3. Turkensteen, Marcel & Ghosh, Diptesh & Goldengorin, Boris & Sierksma, Gerard, 2008. "Tolerance-based Branch and Bound algorithms for the ATSP," European Journal of Operational Research, Elsevier, vol. 189(3), pages 775-788, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pijls, Wim & Post, Henk, 2009. "A new bidirectional search algorithm with shortened postprocessing," European Journal of Operational Research, Elsevier, vol. 198(2), pages 363-369, October.
    2. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    3. Zhang, Ruijuan & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A cooperative vehicle routing problem with delivery options for simultaneous pickup and delivery services in rural areas," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    4. Yang, Jinling & Chen, Zhiwei & Criado, Regino & Zhang, Shenggui, 2024. "A mathematical framework for shortest path length computation in multi-layer networks with inter-edge weighting and dynamic inter-edge weighting: The case of the Beijing bus network, China," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    6. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    8. Fischer, Vera & Pacheco Paneque, Meritxell & Legrain, Antoine & Bürgy, Reinhard, 2024. "A capacitated multi-vehicle covering tour problem on a road network and its application to waste collection," European Journal of Operational Research, Elsevier, vol. 315(1), pages 338-353.
    9. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.
    10. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    11. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    12. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    13. Daniel Selva & Bruce Cameron & Ed Crawley, 2016. "Patterns in System Architecture Decisions," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 477-497, November.
    14. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.
    15. John S. F. Lyons & Peter C. Bell & Mehmet A. Begen, 2018. "Solving the Whistler-Blackcomb Mega Day Challenge," Interfaces, INFORMS, vol. 48(4), pages 323-339, August.
    16. Daniel Delling & Giacomo Nannicini, 2012. "Core Routing on Dynamic Time-Dependent Road Networks," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 187-201, May.
    17. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    18. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    19. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    20. Rodríguez-Pereira, Jessica & Fernández, Elena & Laporte, Gilbert & Benavent, Enrique & Martínez-Sykora, Antonio, 2019. "The Steiner Traveling Salesman Problem and its extensions," European Journal of Operational Research, Elsevier, vol. 278(2), pages 615-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:3:p:755-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.