IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v239y2014i2p413-426.html
   My bibliography  Save this article

An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem

Author

Listed:
  • Aksen, Deniz
  • Kaya, Onur
  • Sibel Salman, F.
  • Tüncel, Özge

Abstract

We study a selective and periodic inventory routing problem (SPIRP) and develop an Adaptive Large Neighborhood Search (ALNS) algorithm for its solution. The problem concerns a biodiesel production facility collecting used vegetable oil from sources, such as restaurants, catering companies and hotels that produce waste vegetable oil in considerable amounts. The facility reuses the collected waste oil as raw material to produce biodiesel. It has to meet certain raw material requirements either from daily collection, or from its inventory, or by purchasing virgin oil. SPIRP involves decisions about which of the present source nodes to include in the collection program, and which periodic (weekly) routing schedule to repeat over an infinite planning horizon. The objective is to minimize the total collection, inventory and purchasing costs while meeting the raw material requirements and operational constraints. A single-commodity flow-based mixed integer linear programming (MILP) model was proposed for this problem in an earlier study. The model was solved with 25 source nodes on a 7-day cyclic planning horizon. In order to tackle larger instances, we develop an ALNS algorithm that is based on a rich neighborhood structure with 11 distinct moves tailored to this problem. We demonstrate the performance of the ALNS, and compare it with the MILP model on test instances containing up to 100 source nodes.

Suggested Citation

  • Aksen, Deniz & Kaya, Onur & Sibel Salman, F. & Tüncel, Özge, 2014. "An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 413-426.
  • Handle: RePEc:eee:ejores:v:239:y:2014:i:2:p:413-426
    DOI: 10.1016/j.ejor.2014.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714004822
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Bertazzi, 2008. "Analysis of Direct Shipping Policies in an Inventory-Routing Problem with Discrete Shipping Times," Management Science, INFORMS, vol. 54(4), pages 748-762, April.
    2. Belien, Jeroen & De Boeck, Liesje & Van Ackere, Jonas, 2011. "Municipal Solid Waste Collection Problems: A Literature Review," Working Papers 2011/34, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. Gulczynski, Damon & Golden, Bruce & Wasil, Edward, 2011. "The period vehicle routing problem: New heuristics and real-world variants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 648-668, September.
    4. Teixeira, Joao & Antunes, Antonio Pais & de Sousa, Jorge Pinho, 2004. "Recyclable waste collection planning--a case study," European Journal of Operational Research, Elsevier, vol. 158(3), pages 543-554, November.
    5. Repoussis, P.P. & Paraskevopoulos, D.C. & Zobolas, G. & Tarantilis, C.D. & Ioannou, G., 2009. "A web-based decision support system for waste lube oils collection and recycling," European Journal of Operational Research, Elsevier, vol. 195(3), pages 676-700, June.
    6. Raa, Birger & Aghezzaf, El-Houssaine, 2009. "A practical solution approach for the cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 429-441, January.
    7. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    8. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    9. S. Anily & A. Federgruen, 1990. "One Warehouse Multiple Retailer Systems with Vehicle Routing Costs," Management Science, INFORMS, vol. 36(1), pages 92-114, January.
    10. Zhang, Zizhen & Che, Oscar & Cheang, Brenda & Lim, Andrew & Qin, Hu, 2013. "A memetic algorithm for the multiperiod vehicle routing problem with profit," European Journal of Operational Research, Elsevier, vol. 229(3), pages 573-584.
    11. Yu, Yugang & Chen, Haoxun & Chu, Feng, 2008. "A new model and hybrid approach for large scale inventory routing problems," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1022-1040, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    2. Amit Verma & Ann Melissa Campbell, 0. "Strategic placement of telemetry units considering customer usage correlation," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 0, pages 1-30.
    3. Elbek, Maria & Wøhlk, Sanne, 2016. "A variable neighborhood search for the multi-period collection of recyclable materials," European Journal of Operational Research, Elsevier, vol. 249(2), pages 540-550.
    4. Luo, Zhixing & Qin, Hu & Zhang, Dezhi & Lim, Andrew, 2016. "Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 69-89.
    5. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    6. TURKEŠ, Renata & SÖRENSEN, Kenneth & HVATTUM, Lars Magnus & BARRENA, Eva & CHENTLI, Hayet & COELHO, Leandro & DAYARIAN, Iman & GRIMAULT, Axel & GULLHAVE, Anders & IRIS, Çagatay & KESKIN, Merve & KIEFE, 2019. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," Working Papers 2019002, University of Antwerp, Faculty of Business and Economics.
    7. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    8. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    10. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    11. Onur Kaya & Dogus Ozkok, 2020. "A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions," Networks and Spatial Economics, Springer, vol. 20(3), pages 757-783, September.
    12. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    13. Amit Verma & Ann Melissa Campbell, 2019. "Strategic placement of telemetry units considering customer usage correlation," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 35-64, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:239:y:2014:i:2:p:413-426. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.